MA40042 Measure Theory and Integration

Constructing measures: An outline

0. Setup

Let X be a nonempty set. We start with

- A collection R of subsets of X, with $\emptyset \in \mathcal{R}$.
- A function $\rho \colon \mathcal{R} \to [0, \infty]$, with $\rho(\varnothing) = 0$.

The idea is that $\mathcal R$ is a collection of 'simple' sets, and we want the measure of $R \in \mathcal{R}$ to be $\rho(R)$.

An important case is the Lebesque measure. On $X = \mathbb{R}$, we take R to be the collection of intervals \mathcal{I} , and define the length ρ by

$$
\rho(\varnothing) = 0 \qquad \rho([a, b)) = b - a \qquad \rho([-\infty, b)) = \rho([a, \infty)) = \rho(\mathbb{R}) = \infty.
$$

1. Outer measure

Given a countable subcollection $\mathcal{C} \subset \mathcal{R}$, we write

$$
\rho(\mathcal{C}) = \sum_{R \in \mathcal{C}} \rho(R).
$$

We call C a covering of a set $A \subset X$ if $A \subset \bigcup_{R \in \mathcal{C}} R$. We define a function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ by

$$
\mu^*(A) := \inf \{ \rho(C) : C \text{ is a covering of } A \}.
$$

The function μ^* is an *outer measure*, in that

1. $\mu^*(\varnothing) = 0$

- 2. μ^* is monotone, in that for $A \subset B \subset X$ we have $\mu^*(A) \leq \mu^*(B)$.
- 3. μ^* is countably subadditive, in that for a countably infinite sequence A_1 , A_2, \ldots of subsets of X, we have

$$
\mu^* \bigg(\bigcup_n A_n \bigg) \le \sum_n \mu^* (A_n).
$$

2. Measurable sets

We say that a set $A \subset X$ is *measurable* if it satisfies the splitting condition

$$
\mu^*(S) = \mu^*(S \cap A) + \mu^*(S \cap A^c) \quad \text{for all } S \subset X.
$$

We write M for the collection of measurable sets, and μ for the restriction of μ^* to M.

The triple (X, \mathcal{M}, μ) is a measure space.

3. Carathéodory's extension theorem

A function $\pi: \mathcal{R} \to [0, \infty]$ is a premeasure on (X, \mathcal{R}) if

1. $\pi(\emptyset) = 0$:

2. if A_1, A_2, \ldots is a countable sequence of disjoint sets in $\mathcal R$ and if their union $\bigcup_{n=1}^{\infty} A_n$ is also in \mathcal{R} , then

$$
\pi\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \pi(A_n).
$$

A collection S of subsets of X is a *semialgebra* if

1. $\varnothing \in \mathcal{S}$;

- 2. S is closed under finite intersections, in that for $A, B \in S$ we have $A \cap B \in S$;
- 3. 'complements are finite disjoint unions,' in that for $A \in \mathcal{S}$, there exists disjoint B_1, B_2, \ldots, B_N in S such that $A^c = \bigcup_{n=1}^N B_n$.

Carathéodory's extension theorem. Let X be a nonempty set, S be a semialgebra on X, and π a premeasure on (X, \mathcal{S}) . Then there exists a measure μ which extends π .

Further, if μ is a σ -finite measure, then it is the unique such extension.

The Lebesgue measure on $\mathbb R$ is the unique measure λ on $(\mathbb R, \mathcal{B})$ such that $\lambda([a, b)) =$ $b - a$ for all $a < b$.

> Matthew Aldridge m.aldridge@bath.ac.uk