MA40042 Measure Theory and Integration

Lecture 1 σ -algebras

- σ-algebras: definition, examples, and basic properties
- Generated σ -algebras
- Algebras

1.1 Definition

Recall from last time the properties we wanted a collection of measurable sets in X to have:

- 1. The empty set \emptyset is measurable.
- 2. Finite or countably infinite unions of measurable sets are measurable.
- 3. The set X itself is measurable.
- 4. Complements of measurable sets are measurable.

It's fairly easy to show (and we will later) that the following three points satisfy for a definition, and the other properties follow from these.

Definition 1.1. Let X be a nonempty set. A collection Σ of subsets of X is called a σ -algebra (or σ -field) on X, if it has the following properties:

- 1. $\emptyset \in \Sigma;$
- 2. if $A \in \Sigma$ then $A^{c} := X \setminus A \in \Sigma$;
- 3. if A_1, A_2, \ldots is a countably infinite sequence of sets in Σ , then the union $\bigcup_{n=1}^{\infty} A_n \in \Sigma$ also.
- The pair (X, Σ) is called a *measurable space*.

(Recall that in this course we are using the convention that $A \subset X$ means 'A is a subset of X or equal to X.' In particular, $X \subset X$ and $\emptyset \subset X$ are always true.)

In probability contexts, the set X is called the *sample space*, and is usually denoted Ω . The σ -algebra is usually denoted \mathcal{F} . The subsets A are called *events*. In point 2, A^{c} is the event that A does not occur; in point 3, the union is the event the at least one of the A_{n} s occurs.

1.2 Examples

The following are examples of $\sigma\text{-algebras}.$ Checking that these really are $\sigma\text{-algebras}$ is a homework exercise.

• For any nonempty set X the *powerset* of X is the set of all subsets of X; that is,

$$\mathcal{P}(X) = \{A : A \subset X\}.$$

The powerset is the most common σ -algebra on countable sets.

- For any nonempty set X, the trivial σ -algebra is $\Sigma = \{\emptyset, X\}$.
- Let X be a set and A a subset with $A \neq \emptyset, X$. Then $\Sigma = \{\emptyset, A, A^{c}, X\}$ is a σ -algebra.
- Recall that a subset $A \subset X$ is called *countable* if it is finite or countably infinite, and is called *co-countable* f its complement A^c is countable. For nonempty X, the collection

 $\Sigma = \{ A \subset X : A \text{ is countable or co-countable} \}$

is a σ -algebra. (If X itself is countable, then $\Sigma = \mathcal{P}(X)$.)

1.3 Properties

Now let's go through some basic properties of σ -algebras.

Theorem 1.2. Let (X, Σ) be a measurable space. Then we have the following:

- 1. $X \in \Sigma$;
- 2. if A_1, A_2, \ldots, A_N is a finite sequence of sets in Σ , then $\bigcup_{n=1}^N A_n \in \Sigma$ also;
- 3. if A_1, A_2, \ldots is a countably infinite sequence of sets in Σ , then the intersection $\bigcap_{n=1}^{\infty} A_n \in \Sigma$ also;
- 4. if A_1, A_2, \ldots, A_N is a finite sequence of sets in Σ , then $\bigcap_{n=1}^N A_n \in \Sigma$ also;
- 5. if $A, B \in \Sigma$ with $B \subset A$, then $B \setminus A \in \Sigma$;
- 6. if $A, B \in \Sigma$, then the symmetric difference $A \triangle B \in \Sigma$. (Recall that the symmetric difference $A \triangle B$ is the set of points in A or in B but not in both.)

The idea is that that a $\sigma\text{-algebra}$ is closed under countable sequences of set operations.

Proof. Most of these are left for homework, but we'll do 2 as an example.

First, recall De Morgan's law, that

$$\bigcap_{n=1}^{\infty} A_n = \left(\bigcup_{n=1}^{\infty} A_n^{\mathsf{c}}\right)^{\mathsf{c}}.$$

(The right-hand side says it's not the case that you're missing from any of the sets A_n , which is equivalent to the left-hand side, which says you're in all of the sets A_n .)

Suppose the A_n s are all in Σ . By point 2 of the definition of a σ -algebra, their complements A_n^c are in Σ also. Then by point 3, their union $\bigcup_{n=1}^{\infty} A_n^c$ is in Σ , and by point 2 the complement of that union is in Σ as well. By De Morgan's law, this complement of a union of complements is precisely the desired intersection. \Box

1.4 Generated σ -algebras

The following is an important definition.

Definition 1.3. Let X be a nonempty set, and let \mathcal{C} be a collection of subsets of X. Then the σ -algebra generated by \mathcal{C} , denoted $\sigma(\mathcal{C})$, is the intersection of all σ -algebras on X containing \mathcal{C} ; that is,

$$\sigma(\mathcal{C}) := \bigcap_{\substack{\Sigma \supset \mathcal{C} \\ \Sigma \text{ a } \sigma\text{-algebra on } X}} \Sigma.$$
(*)

The reason it's important (and the reason for the name) comes from the following theorem.

Theorem 1.4. Let X be a nonempty set, and let C be a collection of subsets of X. Then $\sigma(C)$ is a σ -algebra, and is the smallest σ -algebra containing C.

(By 'smallest', we mean that every other σ -algebra containing C is a proper superset of $\sigma(C)$.)

So if you want all the sets in some collection C to measurable, you have to at least use the σ -algebra generated by C.

For example, if $\mathcal{C} = \{C\}$ contains a single set $C \neq \emptyset, X$, then $\sigma(\mathcal{C}) = \{\emptyset, C, C^{\mathsf{c}}, X\}$. If \mathcal{C} is already a σ -algebra, then $\sigma(\mathcal{C}) = \mathcal{C}$.

Proof. Let's first check that $\sigma(\mathcal{C})$ is a σ -algebra. (Actually, we'll show that any intersection of σ -algebras is also a σ -algebra.) We need to show it satisfies the three criteria from the definition.

First, the empty set \emptyset is in every σ -algebra containing C, so is also in their intersection.

Second, if some set A is in every σ -algebra in the intersection, then its complement A^{c} is also in each of those σ -algebras, by point 2 of the definition. Hence A^{c} is also in the intersection.

Third, if each of the countable sequence of sets (A_n) is in every σ -algebra in the intersection, then their union $\bigcup_{n=1}^{\infty} A_n$ is also in each of those σ -algebras, by point 3 of the definition. Hence that union is also in the intersection. Hence the intersection is a σ -algebra, as desired.

Now we show that $\sigma(\mathcal{C})$ is the smallest σ -algebra containing \mathcal{C} .

That $\sigma(\mathcal{C})$ contains \mathcal{C} is immediate, as it is intersection of collections that all contain \mathcal{C} .

To see it is the smallest such σ -algebra, let Σ be the smallest σ -algebra containing \mathcal{C} . But $\sigma(\mathcal{C})$ is by definition an intersection of collections including Σ , so is at least as small as Σ .

1.5 Algebras

It's sometimes useful to have a looser definition than a σ -algebra. Since a σ -algebra is closed under countable set operations, it makes sense to define an *algebra* to be closed under just finite (but not necessarily countably infinite) set operations.

Definition 1.5. Let X be a nonempty set. A collection \mathcal{A} of subsets of X is called an *algebra* (or *field*) on X, if it has the following properties:

- 1. $\emptyset \in \mathcal{A};$
- 2. if $A \in \mathcal{A}$ then $A^{\mathsf{c}} \in \mathcal{A}$;
- 3. if A_1, A_2, \ldots, A_N is a finite sequence of sets in \mathcal{A} , then the union $\bigcup_{n=1}^N A_n \in \mathcal{A}$ also.

It's not hard to prove basic facts about algebras along the lines of Theorem 1.2. For example, $X \in \mathcal{A}$, and an algebra is closed under finite intersections.

An easy fact is the following.

Theorem 1.6. Every σ -algebra is an algebra.

Proof. Points 1 and 2 of the definition are immediate, and point 3 is shown by point 2 of Theorem 1.2. \Box

However, the converse is not true. A homework problem invites you to give an example of a σ -algebra that is not an algebra.

Another problem invites you to define $a(\mathcal{C})$, the algebra generated by \mathcal{C} .

Matthew Aldridge m.aldridge@bath.ac.uk