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Lecture 2

The Borel σ-algebra

• Review of open, closed,
and compact sets in Rd

• The Borel σ-algebra on Rd

• Intervals and boxes in Rd

For countable sets X, the powerset P(X) is a useful σ-algebra. But in larger
sets, such as R or Rd, the full powerset is often too big for interesting measures to
exist, such as the Lebesgue length/area/volume measure. (We’ll see a example of
this later in the course.)

On R or Rd a useful σ-algebra is the Borel σ-algebra. The benefits of the Borel
σ-algebra are:

• it’s large enough to contain any set you’re likely to come across (although we
will later construct a specific set that isn’t in it);

• it’s not so large that useful measures (like the Lebesgue measure) fail to exist.

First, we’ll need to recall some facts about open and closed sets to define this.

2.1 Open and closed sets

Recall the following definitions about open and closed sets in Rd.

Definition 2.1. Write

Bd(x, r) := {y ∈ Rd : |y − x| < r}

for the open ball of radius r about x ∈ Rd. (We’ll suppress the subscript d when
the dimension is clear from context.)

• A set G ⊂ Rd is open if for all x ∈ G there exists an r > 0 such that
B(x, r) ⊂ G.

• A set F ⊂ Rd is closed if its complement F c is open.

• A set K ⊂ Rd is compact if every open cover of K has a finite subcover. That
is, if K can be ‘covered’ by a (not necessarily countable) union of open sets

K ⊂
⋃
α∈I

Gα, Gα ⊂ Rd open for all α ∈ I,

then there exists a finite subset {α1, . . . , αN} ⊂ I that also covers K,

K ⊂
N⋃
n=1

Gαn
.

Checking whether a set is compact under this definition can be difficult, but is
made much easier by the following theorem (which we won’t prove here).

Theorem 2.2 (Heine–Borel theorem). A set K ⊂ Rd is compact if and only if it
is closed and bounded.

Bounded here means that K ⊂ B(x, r) for some x ∈ Rd and some r ∈ (0,∞).

2.2 B(Rd)

Fix d, and write G, F , and K for, respectively, the collection of open, closed, and
compact sets in Rd.

Definition 2.3. The Borel σ-algebra on Rd is the σ-algebra generated by the open
sets, B(Rd) := σ(G).

A set A ∈ B(Rd) is called a Borel set.

We sometimes write B for B(R).

We could instead generate B(Rd) with the closed sets:

Theorem 2.4. B(Rd) = σ(F).

Proof. By the definition of B(Rd), we need to show σ(G) = σ(F). We will do this
in two parts: showing that σ(G) ⊂ σ(F), and that σ(F) ⊂ σ(G).

First, σ(G) ⊂ σ(F). Since σ(G) is the smallest σ-algebra containing G, and σ(F)
is a σ-algebra, it suffices to show that G ⊂ σ(F). Let G be an open set, and let
D = Gc. Since Dc = G is open, D is closed, so D ∈ F . Hence G = Dc is the
complement of a set in F , so is in σ(F).

Second, σ(F) ⊂ σ(G), for which again F ⊂ σ(G) suffices. For F closed, write
E = F c. Then E is open, and Ec = F is in σ(G), as desired.

We can also show that B(Rd) = σ(K); this is a homework problem.



2.3 Intervals and boxes

Intervals and boxes are important sets, as we ‘know’ what their lengths (or areas,
or volumes) should be.

Recall the definition of the semi-open interval

[a, b) = {x ∈ R : a ≤ x < b}, for a < b.

These are convenient because we have for a < b < c that the union [a, b) ∪ [b, c) =
[a, c) is a disjoint one. We could use instead the open intervals (a, b) or closed
intervals [a, b], but it would be a bit fiddly later on in the course. Note though the
open intervals are indeed open, and the closed intervals closed.

Definition 2.5. A set I ⊂ R is an interval is it is of one of the following forms:

• the empty set, I = ∅;

• a semi-open interval, I = [a, b) for a < b;

• an infinite or semi-inifite interval, I = (−∞, b), I = [a,∞), or I = R.

We write I for the set of such intervals.

Again, the empty, semi-infinite, and infinite intervals are included in the defini-
tion for later convenience.

It will be useful to assume the convention [a, b) = ∅ for b ≤ a.

Definition 2.6. A set I ⊂ Rd is an interval box is it is of the form

I = I1 × I2 × · · · × Id =

d∏
i=1

Ii, for I1, I2, . . . , Id ∈ I.

We write Id for the set of interval boxes, or just I when the dimension is obvious
by context.

Theorem 2.7. B(Rd) = σ(Id).

So if we want the intervals and boxes to have length/area/volume (and we do!),
we will have to work in the Borel σ-algebra.

We’ll do the proof long-windedly for d = 1, then more quickly for the general
case.

Proof for d = 1. As before, we need to show I ⊂ B = σ(G) and G ⊂ σ(I).
First I ⊂ B. The empty set is open. For the semi-open case, we have

[a, b) =

∞⋂
n=1

(
a− 1

n
, b

)
,

which writes [a, b) as a countable intersection of open sets. For the infinite and
semi-infinite cases, we have

(−∞, b) =

∞⋃
n=1

[−n, b) [a,∞) =
∞⋃
n=1

[a, n), R =
∞⋃
n=1

[−n, n),

where we’ve already shown [a, b) is a Borel set.
Second G ⊂ σ(I). Given an open set G, we obviously have

G =
⋃
x∈G
{x}.

Further, since G is open, for each x ∈ G there exists a rx > 0 such that B(x, rx) ⊂
G, and so

G =
⋃
x∈G

B(x, rx) =
⋃
x∈G

(x− rx, x+ rx).

Setting ax = x− rx/2 and bx = x+ rx/2, we then have

G =
⋃
x∈G

[ax, bx).

The good news is that we’ve written G as a union of intervals, but the bad news is
that this union might be an uncountable one. But we can pull a clever trick here.
Let cx be a rational number in (ax, x) and dx a rational number in (x, bx). Then

G =
⋃
x∈G

[cx, dx).

But there are only countable many intervals with rational endpoints, so by removing
repeats we can write this union as a countable one. Hence we are done.

General case. First, we have I ⊂ σ(G), since

d∏
i=1

[ai, bi) =

∞⋂
n=1

d∏
i=1

(
ai −

1

n
, bi

)
,

and the infinite boxes are countable unions of these.
Now we show G ⊂ σ(I). For each x in an open set G, let rx be such that

B(x, rx) ⊂ G. Pick cx,i and dx,i to be rational numbers in (xi − rx/2
√
d, xi) and

(xi, xi + rx/2
√
d) respectively. (The

√
d ensures the box fits inside the ball.) Then

G =
⋃
x∈G

d∏
i=1

[cx,i, dx,i),

and because there are only countably many boxes with rational coordinates, the
union consists of only countably many distinct sets.


