MA40042 Measure Theory and Integration

Lecture

Constructing measures 11I:
Measurable sets

e Carathéodory’s splitting condition

e The measure space (X, M, p)

5.1 Carathéodory’s splitting condition

So far, starting from X, R and p, we have constructed an outer measure p* on all
of P(X), which is monotone, countably subadditive, and has p*(@) = 0. But p*
is not, in general, a measure. However, we shall see that if we restrict to a smaller
o-algebra, then the restriction of u* to this o-algebra is a measure.

Definition 5.1. Let X be a nonempty set, and p* be an outer measure on X.
We say that a set A C X is Carathéodory measurable with respect to p* (or just
measurable for short) if it satisfies Carathéodory’s splitting condition:

pH(S) = (SN A)+ (SN AT forall S C X.

We write M for the collection of measurable sets, and p for the restriction of p*
to M; that is, the function p: M — [0, oo] with p(A) = p*(A) for A € M.

(This splitting condition is quite mysterious. We aim to give some motivation
for it in the ‘Carathéodory’s splitting condition’ handout.)
Note that by finite subadditivity of u* we always have

pr(S) < p (AN S) +p*(A°NS),

since S = (AN S)U(A°NS). Thus, to show measurability we only have to prove
the opposite inequality

1) = uH(ANS) + p*(A°N S).

5.2 (X, M,u) is a measure space
Now the crucial result.

Theorem 5.2. Let X be a nonempty set, u* an outer measure on X, and M
the collection of Carathéodory measurable sets with respect to u*. Write u for the
restriction of u* to u. Then (X, M, 1) is a measure space.

So we have to first show that M is a g-algebra on X, and then that p is a
measure on (X, M).
Let’s begin with M. We can start by showing it’s an algebra.

Lemma 5.3. The collection of measurable sets M is an algebra.

Proof. The splitting condition for A = @ is p*(S) = p*(@) + p*(S), and since
w* (@) = 0, we see that the empty set is measurable.

The splitting condition remains the same under swapping A for A€, so M is
closed under complements.

Now for closure under finite unions. Since the splitting condition involves in-
tersections, it will be simpler to prove closure under finite intersections. By De
Morgan’s law, the result for unions follows. By induction, we can just deal with
the N = 2 case.

Let A,B € M and S C X. We need to show that

p*(S) = p*(SNANB)+ p* (SN (AN B)).
First, since A satisfies the splitting condition, we have
pe(S) = pr (SN A) + p (5N A). (%)

Next, we can rewrite the term p*(S N A) using the splitting condition for B. Since
B is measurable, using S N A in place of S in the splitting condition, we have

pw(SNA)=p"(SNANB)+p" (SN AN B°). (%)
Substituting (xx) into (x) gives
pr(S)=p (SNANB)+p*(SNANBS) + p*(SNA°).
But, by drawing a picture we see that

(SNANBYYU(SNAS) = SN (ANB).
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Hence, since p* is finitely subadditive, we have that
p(S) = p (SNANB) +p* (SN (AN B)°),
and thus A N B is measurable and we are done. O

The following is a useful lemma.

Lemma 5.4. Let A1, Ao, ..., Ay be a finite sequence of disjoint sets in M. Then
for all S C X, we have

N N
w <Sm U An> =Y w(Sn4,)

Proof. Again, it suffices to prove for N = 2.

Suppose A, B € M are disjoint. The left-hand side of the statement in the
lemma is 11" (S N (AU B)). Using the splitting condition for A with SN (AU B)
taking the place of S, we can write this as

p (SN(AUB)) =p*(SN(AUB)NA) +
=p"(SNA)+p* (SN B),

p* (SN (AUB)NA?)

where we have used that A and B are disjoint. O

We can now prove that p is finitely additive, which is part way to showing it is
a measure.

Lemma 5.5. The measure i is finitely additive on M. That is, if Ay, Aa, ..., AN
is a finite sequence of disjoint sets in M, then

N N
1 (U An) = (A
n=1 n=1
Proof. Set S = X in the Lemma 5.4, recalling that p* = u on M. O

Now we’re ready to complete the work.
Lemma 5.6. The collection of measurable sets M is a o-algebra on X.

Proof. Since M is an algebra, we only have to show closure under countable unions.
Let A1, Ao, ... be a countably infinite sequence of sets in M. In order to apply
the previous lemmas, we ‘disjointify’ by setting
N—-1
Bi=A;, By=Ay\|]J A, for N>2.

n=1

Note that the B,, are measurable, since M is an algebra, and that UZO=1 B, =
U2, Ay. So we need to show that

p(S) > u* <Sm©Bn> +u* <Sm(©Bn)c>.

Since M is an algebra, we have for any N,

NCE (smHB>+u (SH(LNJ ))

zi/f(SmBn)ﬂﬁ (SQ(UBH)C>,

where we have used Lemma 5.4 on the first term and monotonicity on the second
term. Since this holds for all N, we can send N to co. Thus

82 Y w50 B+ (sm ( U B))
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n=1
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where we have used the countable subadditivity of p*. This proves the result. O

Lemma 5.7. Let u be the restriction of an outer measure u* on X to the measur-
able sets M. Then p is a measure on (X, M).

Proof. By definition pu(@) = p*(@) = 0. We only have to show countable additivity.
Let A1, Ag, ... be a countably infinite sequence of disjoint measurable sets. Since
outer measures are countably subadditive, we automatically have

u(U An> = (U An> <Y u(An) =Y u(An)

n=1 n=1 n=1

It remains to prove the inequality in the other direction.
By Lemma 5.5 and monotonicity, we have for any N that

N N o0
ZH(AVL):PJ(UAn)SN(UAn)a
n=1 n=1
so we can send N — oo to get the result. O

Together, Lemmas 5.6 and 5.7 prove that (X, M, p) is a measure space.



