
MA40042 Measure Theory and Integration

Lecture 5

Constructing measures II:
Measurable sets

• Carathéodory’s splitting condition

• The measure space (X,M, µ)

5.1 Carathéodory’s splitting condition

So far, starting from X, R and ρ, we have constructed an outer measure µ∗ on all
of P(X), which is monotone, countably subadditive, and has µ∗(∅) = 0. But µ∗

is not, in general, a measure. However, we shall see that if we restrict to a smaller
σ-algebra, then the restriction of µ∗ to this σ-algebra is a measure.

Definition 5.1. Let X be a nonempty set, and µ∗ be an outer measure on X.
We say that a set A ⊂ X is Carathéodory measurable with respect to µ∗ (or just
measurable for short) if it satisfies Carathéodory’s splitting condition:

µ∗(S) = µ∗(S ∩A) + µ∗(S ∩Ac) for all S ⊂ X.

We writeM for the collection of measurable sets, and µ for the restriction of µ∗

to M; that is, the function µ : M→ [0,∞] with µ(A) = µ∗(A) for A ∈M.

(This splitting condition is quite mysterious. We aim to give some motivation
for it in the ‘Carathéodory’s splitting condition’ handout.)

Note that by finite subadditivity of µ∗ we always have

µ∗(S) ≤ µ∗(A ∩ S) + µ∗(Ac ∩ S),

since S = (A ∩ S) ∪ (Ac ∩ S). Thus, to show measurability we only have to prove
the opposite inequality

µ∗(S) ≥ µ∗(A ∩ S) + µ∗(Ac ∩ S).

5.2 (X,M, µ) is a measure space

Now the crucial result.

Theorem 5.2. Let X be a nonempty set, µ∗ an outer measure on X, and M
the collection of Carathéodory measurable sets with respect to µ∗. Write µ for the
restriction of µ∗ to µ. Then (X,M, µ) is a measure space.

So we have to first show that M is a σ-algebra on X, and then that µ is a
measure on (X,M).

Let’s begin with M. We can start by showing it’s an algebra.

Lemma 5.3. The collection of measurable sets M is an algebra.

Proof. The splitting condition for A = ∅ is µ∗(S) = µ∗(∅) + µ∗(S), and since
µ∗(∅) = 0, we see that the empty set is measurable.

The splitting condition remains the same under swapping A for Ac, so M is
closed under complements.

Now for closure under finite unions. Since the splitting condition involves in-
tersections, it will be simpler to prove closure under finite intersections. By De
Morgan’s law, the result for unions follows. By induction, we can just deal with
the N = 2 case.

Let A,B ∈M and S ⊂ X. We need to show that

µ∗(S) ≥ µ∗(S ∩A ∩B) + µ∗
(
S ∩ (A ∩B)c

)
.

First, since A satisfies the splitting condition, we have

µ∗(S) = µ∗(S ∩A) + µ∗(S ∩Ac). (∗)

Next, we can rewrite the term µ∗(S ∩A) using the splitting condition for B. Since
B is measurable, using S ∩A in place of S in the splitting condition, we have

µ∗(S ∩A) = µ∗(S ∩A ∩B) + µ∗(S ∩A ∩Bc). (∗∗)

Substituting (∗∗) into (∗) gives

µ∗(S) = µ∗(S ∩A ∩B) + µ∗(S ∩A ∩Bc) + µ∗(S ∩Ac).

But, by drawing a picture we see that

(S ∩A ∩Bc) ∪ (S ∩Ac) = S ∩ (A ∩B)c.



Hence, since µ∗ is finitely subadditive, we have that

µ∗(S) ≥ µ∗(S ∩A ∩B) + µ∗
(
S ∩ (A ∩B)c

)
,

and thus A ∩B is measurable and we are done.

The following is a useful lemma.

Lemma 5.4. Let A1, A2, . . . , AN be a finite sequence of disjoint sets in M. Then
for all S ⊂ X, we have

µ∗

(
S ∩

N⋃
n=1

An

)
=

N∑
n=1

µ∗(S ∩An).

Proof. Again, it suffices to prove for N = 2.
Suppose A,B ∈ M are disjoint. The left-hand side of the statement in the

lemma is µ∗
(
S ∩ (A ∪ B)

)
. Using the splitting condition for A with S ∩ (A ∪ B)

taking the place of S, we can write this as

µ∗
(
S ∩ (A ∪B)

)
= µ∗

(
S ∩ (A ∪B) ∩A

)
+ µ∗

(
S ∩ (A ∪B) ∩Ac

)
= µ∗(S ∩A) + µ∗(S ∩B),

where we have used that A and B are disjoint.

We can now prove that µ is finitely additive, which is part way to showing it is
a measure.

Lemma 5.5. The measure µ is finitely additive on M. That is, if A1, A2, . . . , AN

is a finite sequence of disjoint sets in M, then

µ

(
N⋃

n=1

An

)
=

N∑
n=1

µ(An).

Proof. Set S = X in the Lemma 5.4, recalling that µ∗ = µ on M.

Now we’re ready to complete the work.

Lemma 5.6. The collection of measurable sets M is a σ-algebra on X.

Proof. SinceM is an algebra, we only have to show closure under countable unions.
Let A1, A2, . . . be a countably infinite sequence of sets in M. In order to apply

the previous lemmas, we ‘disjointify’ by setting

B1 = A1, BN = AN \
N−1⋃
n=1

An for N ≥ 2.

Note that the Bn are measurable, since M is an algebra, and that
⋃∞

n=1Bn =⋃∞
n=1An. So we need to show that

µ∗ (S) ≥ µ∗
(
S ∩

∞⋃
n=1

Bn

)
+ µ∗

(
S ∩

( ∞⋃
n=1

Bn

)c)
.

Since M is an algebra, we have for any N ,

µ∗ (S) ≥ µ∗
(
S ∩

N⋃
n=1

Bn

)
+ µ∗

(
S ∩

( N⋃
n=1

Bn

)c)

≥
N∑

n=1

µ∗(S ∩Bn) + µ∗

(
S ∩

( ∞⋃
n=1

Bn

)c)
,

where we have used Lemma 5.4 on the first term and monotonicity on the second
term. Since this holds for all N , we can send N to ∞. Thus

µ∗ (S) ≥
∞∑

n=1

µ∗(S ∩Bn) + µ∗

(
S ∩

( ∞⋃
n=1

Bn

)c)

≥ µ∗
( ∞⋃

n=1

(S ∩Bn)

)
+ µ∗

(
S ∩

( ∞⋃
n=1

Bn

)c)

= µ∗

(
S ∩

∞⋃
n=1

Bn

)
+ µ∗

(
S ∩

( ∞⋃
n=1

Bn

)c)
,

where we have used the countable subadditivity of µ∗. This proves the result.

Lemma 5.7. Let µ be the restriction of an outer measure µ∗ on X to the measur-
able sets M. Then µ is a measure on (X,M).

Proof. By definition µ(∅) = µ∗(∅) = 0. We only have to show countable additivity.
Let A1, A2, . . . be a countably infinite sequence of disjoint measurable sets. Since

outer measures are countably subadditive, we automatically have

µ

( ∞⋃
n=1

An

)
= µ∗

( ∞⋃
n=1

An

)
≤
∞∑

n=1

µ∗(An) =

∞∑
n=1

µ(An).

It remains to prove the inequality in the other direction.
By Lemma 5.5 and monotonicity, we have for any N that

N∑
n=1

µ(An) = µ

(
N⋃

n=1

An

)
≤ µ

( ∞⋃
n=1

An

)
,

so we can send N →∞ to get the result.

Together, Lemmas 5.6 and 5.7 prove that (X,M, µ) is a measure space.


