MA40042 Measure Theory and Integration

Lecture 6

Constructing measures III: Carathéodory's extension theorem

- Premeasures and semialgebras
- \bullet Carathéodory's extension theorem for algebras and for semialgebras.
- Lebesgue measure: existence and uniqueness

6.1 Carathéodory's extension theorem for algebras

The story so far:

- 0. We started with a set X and a collection R of sets, with a function ρ on R, representing the sets whose measure we 'know'.
- 1. We constructed an outer measure μ^* on all of $\mathcal{P}(X)$.
- 2. We saw that if we restrict μ^* to μ on just the measurable sets M (satisfying the splitting condition), then μ is a measure on M.

However, we haven't guaranteed that this constructed measure μ extends ρ , in the sense that all of R is measurable, and $\mu(R) = \rho(R)$ for $R \in \mathcal{R}$. In fact, in general, it's not true. However, it is true if $\mathcal R$ and ρ have certain properties.

First let's deal with ρ . Clearly ρ can't by itself contradict the measure axioms, as then an extension would have no hope.

Definition 6.1. Let X be a nonempty set, and let \mathcal{R} be collection of subsets of X containing \emptyset . Then a function $\pi: \mathcal{R} \to [0, \infty]$ is a premeasure on (X, \mathcal{R}) if

2. if A_1, A_2, \ldots is a countable sequence of disjoint sets in $\mathcal R$ and if their union $\bigcup_{n=1}^{\infty} A_n$ is also in \mathcal{R} , then

$$
\pi\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \pi(A_n).
$$

We will also need R to have some of the structure of a σ -algebra. An algebra is an example of this we already know.

Theorem 6.2 (Carathéodory's extension theorem for algebras). Let X be a nonempty set, A be an algebra on X, and π a premeasure on (X, \mathcal{A}) . Then there exists a measure μ which extends π , in the sense that μ is a measure on $(X, \sigma(\mathcal{A}))$ with $\mu(A) = \pi(A)$ for $A \in \mathcal{A}$.

Further, if μ is a σ -finite measure, then it is the unique such extension.

The idea is to take μ to be the restriction of the outer measure μ^* constructed via the covering method. So to prove the extension theorem we need to show that

- $\sigma(\mathcal{A}) \subset \mathcal{M}$, the measurable sets since \mathcal{M} is a σ -algebra, just showing $\mathcal{A} \subset \mathcal{M}$ suffices;
- $\mu(A) = \pi(A)$ for $A \in \mathcal{A}$;
- uniqueness (in the σ -finite case).

We shall do the proof later.

Since M is a complete measure space (see Problem Sheet 3), we could extend π even further to the completion $(X, \sigma(\mathcal{A}), \bar{\mu})$ of $(X, \sigma(\mathcal{A}), \mu)$ if we wished, but we won't bother in this course.

6.2 Carathéodory's extension theorem for semialgebras

While Theorem 6.2 is an important result, asking for R to be an algebra is quite a strenuous requirement. For example, the collection of intervals $\mathcal I$ we have in the setup for the Lebesgue measure is not an algebra, so this theorem is insufficient to prove existence of the Lebesgue measure.

Instead, we will look at a weaker definition.

Definition 6.3. Let X be a nonempty set, and S a collection of subsets of X. Then S is a *semialgebra* if

1. $\varnothing \in \mathcal{S}$:

- 2. S is closed under finite intersections, in that for $A, B \in S$ we have $A \cap B \in S$;
- 3. 'complements are finite disjoint unions,' in that for $A \in \mathcal{S}$, there exists disjoint B_1, B_2, \ldots, B_N in S such that $A^c = \bigcup_{n=1}^N B_n$.

1. $\pi(\emptyset) = 0$;

Theorem 6.4. Every algebra is a semialgebra.

Proof. The empty set is immediate, completements as finite disjoint unions from setting $B_1 = A^c$, and intersections follows from De Morgan's law. \Box

Theorem 6.5 (Carathéodory's extension theorem for semialgebras). Let X be a nonempty set, S be a semialgebra on X, and π a premeasure on (X, \mathcal{S}) . Then there exists a measure μ which extends π .

Further, if μ is a σ -finite measure, then it is the unique such extension.

Again, we postpone the proof.

6.3 The Lebesgue measure

Back in Lecture 3, we defined the Lebesgue measure on R as follows.

Definition 6.6. The Lebesgue measure on R is the unique measure λ on $(\mathbb{R}, \mathcal{B})$ such that $\lambda([a, b)) = b - a$ for all $a < b$.

The Lebesgue measure on \mathbb{R}^d is the unique measure λ on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ such that

$$
\lambda \left(\prod_{i=1}^d [a_i, b_i) \right) = \prod_{i=1}^d (b_i - a_i) \quad \text{for all } a_i < b_i, \, i = 1, 2, \dots, d.
$$

Theorem 6.7. The Lebesque measure exists and is unique.

We shall give the full proof just for the $d = 1$ case, although the general case is much the same. Also the product measure (see Problem Sheet 3, and later in the course) gives an alternative construction in the $d > 2$ case.

Proof. First some housekeeping. All the intervals $[a, b]$ must be measurable, as must the empty set, while taking countable unions shows the infinite intervals $(\infty, b), [a, \infty), \mathbb{R}$ must be measurable too. This gives all the intervals in \mathcal{I} . Further, by countable additivity, the infinite intervals must have measure ∞ , and the empty set must have measure 0. This gives the length function ρ as defined in the 'setup' of Lecture 4.

Since $\sigma(\mathcal{I}) = \mathcal{B}$, Carathéodory's extension theorem will show that the restriction the Lebesgue outer measure λ^* to β works. We just need to show that $\mathcal I$ is a σ-algebra, that the length $ρ$ is a premeasure, and that $λ$ is σ-finite. We prove these in the upcoming lemmas. \Box

Lemma 6.8. The collection of intervals $\mathcal I$ is a semialgebra on $\mathbb R$.

Proof. That $\emptyset \in \mathcal{I}$ is immediate. For finite intersections, note that

$$
[a, b) \cap [c, d) = [\max\{a, c\}, \min\{b, d\}]
$$

(with the latter interval interpreted as \varnothing where necessary), with a similar result for the infinite and empty intervals. For complements, we have

$$
[a,b)^c = (-\infty, a) \cup [b, \infty),
$$

and similar for the infinite and empty intervals.

Basically the same proof works in d dimensions, although it takes a few lines to show the complement of an interval box in \mathbb{R}^d can be written as a union of (at most) 2d interval boxes.

Lemma 6.9. The 'length' function ρ is a premeasure on $(\mathbb{R}, \mathcal{I})$.

Proof. We certainly have $\rho(\emptyset) = 0$.

We need to show countable additivity. Let I_1, I_2, \ldots be disjoint intervals whose union is also an interval I. For finite N, we clearly have $\rho(I) \geq \sum_{n=1}^{N} \rho(I_n)$, for example by sorting the intervals from left to right. Sendin $N \to \infty$ gives $\rho(I) \geq \sum_{n=1}^{N} \rho(I_n).$

We have to show the inequality the other way.

First, we assume the intervals are non-infinite, so the $I_n = [a_n, b_n]$ are disjoint, and their union is $I = [a, b)$. We use a compactness argument, which allows us to reduce from infinitely many to finitely many sets. Extend each interval to an open interval $I'_n = (a_n - \epsilon/2^n, b_n)$ (noting an upcoming use of the $\epsilon/2^n$ trick). Then these intervals cover the compact interval $[a, b - \epsilon]$ of length $b - a - \epsilon$. Since this is compact, the open cover $\{I'_1, I'_2, \dots\}$ has a finite subcover $\{I'_{n_1}, I'_{n_2}, \dots, I'_{n_k}\}$. Thus

$$
b-a-\epsilon \leq \sum_{j=1}^k \rho(I'_{n_j}) \leq \sum_{j=1}^k \left(\rho(I_{n_j}) + \frac{\epsilon}{2^{n_j}}\right) \leq \sum_{j=1}^k \rho(I_{n_j}) + \epsilon \leq \sum_{n=1}^\infty \rho(I_n) + \epsilon.
$$

Hence $\rho(I) \leq \sum_{n=1}^{\infty} \rho(I_n) + 2\epsilon$, and since ϵ was arbitrary, this proves the inequality. Suppose instead that I is infinite. Then for fixed M, the intervals $I_n \cap [-M, M)$

are disjoint with union $I \cap [-M, M)$. By the previous paragraph, we see that

$$
\sum_{n=1}^{\infty} \rho(I_n) \ge \sum_{n=1}^{\infty} \rho(I_n \cap [-M, M)) \ge \rho(I \cap [-M, M)).
$$

The right-hand side tends to ∞ as $M \to \infty$, so the left-hand side must equal ∞ also. This gives the result. \Box

Lemma 6.10. The Lebesque measure λ on $\mathbb R$ is σ -finite.

Proof. We have the countable union
$$
\mathbb{R} = \bigcup_{n=1}^{\infty} [-n, n)
$$
 with $\lambda([-n, n) = 2n \leq \infty$. \square

Matthew Aldridge m.aldridge@bath.ac.uk

 \Box