
MA40042 Measure Theory and Integration

Lecture 6

Constructing measures III:
Carathéodory’s extension theorem

• Premeasures and semialgebras

• Carathéodory’s extension theorem
for algebras and for semialgebras.

• Lebesgue measure:
existence and uniqueness

6.1 Carathéodory’s extension theorem for algebras

The story so far:

0. We started with a set X and a collection R of sets, with a function ρ on R,
representing the sets whose measure we ‘know’.

1. We constructed an outer measure µ∗ on all of P(X).

2. We saw that if we restrict µ∗ to µ on just the measurable sets M (satisfying
the splitting condition), then µ is a measure on M.

However, we haven’t guaranteed that this constructed measure µ extends ρ, in
the sense that all of R is measurable, and µ(R) = ρ(R) for R ∈ R. In fact, in
general, it’s not true. However, it is true if R and ρ have certain properties.

First let’s deal with ρ. Clearly ρ can’t by itself contradict the measure axioms,
as then an extension would have no hope.

Definition 6.1. Let X be a nonempty set, and let R be collection of subsets of
X containing ∅. Then a function π : R → [0,∞] is a premeasure on (X,R) if

1. π(∅) = 0;

2. if A1, A2, . . . is a countable sequence of disjoint sets in R and if their union⋃∞
n=1An is also in R, then

π

( ∞⋃
n=1

An

)
=

∞∑
n=1

π(An).

We will also need R to have some of the structure of a σ-algebra. An algebra is
an example of this we already know.

Theorem 6.2 (Carathéodory’s extension theorem for algebras). Let X be a
nonempty set, A be an algebra on X, and π a premeasure on (X,A). Then there
exists a measure µ which extends π, in the sense that µ is a measure on

(
X,σ(A)

)
with µ(A) = π(A) for A ∈ A.

Further, if µ is a σ-finite measure, then it is the unique such extension.

The idea is to take µ to be the restriction of the outer measure µ∗ constructed
via the covering method. So to prove the extension theorem we need to show that

• σ(A) ⊂M, the measurable sets – sinceM is a σ-algebra, just showing A ⊂M
suffices;

• µ(A) = π(A) for A ∈ A;

• uniqueness (in the σ-finite case).

We shall do the proof later.
Since M is a complete measure space (see Problem Sheet 3), we could extend π

even further to the completion
(
X,σ(A), µ̄) of

(
X,σ(A), µ

)
if we wished, but we

won’t bother in this course.

6.2 Carathéodory’s extension theorem for semialgebras

While Theorem 6.2 is an important result, asking for R to be an algebra is quite
a strenuous requirement. For example, the collection of intervals I we have in the
setup for the Lebesgue measure is not an algebra, so this theorem is insufficient to
prove existence of the Lebesgue measure.

Instead, we will look at a weaker definition.

Definition 6.3. Let X be a nonempty set, and S a collection of subsets of X.
Then S is a semialgebra if

1. ∅ ∈ S;

2. S is closed under finite intersections, in that for A,B ∈ S we have A∩B ∈ S;

3. ‘complements are finite disjoint unions,’ in that for A ∈ S, there exists disjoint
B1, B2, . . . , BN in S such that Ac =

⋃N
n=1Bn.



Theorem 6.4. Every algebra is a semialgebra.

Proof. The empty set is immediate, completements as finite disjoint unions from
setting B1 = Ac, and intersections follows from De Morgan’s law.

Theorem 6.5 (Carathéodory’s extension theorem for semialgebras). Let X be a
nonempty set, S be a semialgebra on X, and π a premeasure on (X,S). Then there
exists a measure µ which extends π.

Further, if µ is a σ-finite measure, then it is the unique such extension.

Again, we postpone the proof.

6.3 The Lebesgue measure

Back in Lecture 3, we defined the Lebesgue measure on R as follows.

Definition 6.6. The Lebesgue measure on R is the unique measure λ on (R,B)
such that λ

(
[a, b)

)
= b− a for all a < b.

The Lebesgue measure on Rd is the unique measure λ on
(
Rd,B(Rd)

)
such that

λ

(
d∏

i=1

[ai, bi)

)
=

d∏
i=1

(bi − ai) for all ai < bi, i = 1, 2, . . . , d.

Theorem 6.7. The Lebesgue measure exists and is unique.

We shall give the full proof just for the d = 1 case, although the general case is
much the same. Also the product measure (see Problem Sheet 3, and later in the
course) gives an alternative construction in the d ≥ 2 case.

Proof. First some housekeeping. All the intervals [a, b) must be measurable, as
must the empty set, while taking countable unions shows the infinite intervals
(∞, b), [a,∞),R must be measurable too. This gives all the intervals in I. Further,
by countable additivity, the infinte intervals must have measure ∞, and the empty
set must have measure 0. This gives the length function ρ as defined in the ‘setup’
of Lecture 4.

Since σ(I) = B, Carathéodory’s extension theorem will show that the restriction
the Lebesgue outer measure λ∗ to B works. We just need to show that I is a
σ-algebra, that the length ρ is a premeasure, and that λ is σ-finite. We prove these
in the upcoming lemmas.

Lemma 6.8. The collection of intervals I is a semialgebra on R.

Proof. That ∅ ∈ I is immediate. For finite intersections, note that

[a, b) ∩ [c, d) =
[

max{a, c},min{b, d}
)

(with the latter interval interpreted as ∅ where necessary), with a similar result
for the infinite and empty intervals. For complements, we have

[a, b)c = (−∞, a) ∪ [b,∞),

and similar for the infinite and empty intervals.

Basically the same proof works in d dimensions, although it takes a few lines to
show the complement of an interval box in Rd can be written as a union of (at
most) 2d interval boxes.

Lemma 6.9. The ‘length’ function ρ is a premeasure on (R, I).

Proof. We certainly have ρ(∅) = 0.
We need to show countable additivity. Let I1, I2, , . . . be disjoint intervals whose

union is also an interval I. For finite N , we clearly have ρ(I) ≥
∑N

n=1 ρ(In),
for example by sorting the intervals from left to right. Sendin N → ∞ gives
ρ(I) ≥

∑N
n=1 ρ(In).

We have to show the inequality the other way.
First, we assume the intervals are non-infinite, so the In = [an, bn) are disjoint,

and their union is I = [a, b). We use a compactness argument, which allows us to
reduce from infinitely many to finitely many sets. Extend each interval to an open
interval I ′n = (an − ε/2n, bn) (noting an upcoming use of the ε/2n trick). Then
these intervals cover the compact interval [a, b− ε] of length b− a− ε. Since this is
compact, the open cover {I ′1, I ′2, . . . } has a finite subcover {I ′n1

, I ′n2
, . . . , I ′nk

}. Thus

b− a− ε ≤
k∑

j=1

ρ(I ′nj
) ≤

k∑
j=1

(
ρ(Inj ) +

ε

2nj

)
≤

k∑
j=1

ρ(Inj ) + ε ≤
∞∑

n=1

ρ(In) + ε.

Hence ρ(I) ≤
∑∞

n=1 ρ(In)+2ε, and since ε was arbitrary, this proves the inequality.
Suppose instead that I is infinite. Then for fixed M , the intervals In ∩ [−M,M)

are disjoint with union I ∩ [−M,M). By the previous paragraph, we see that

∞∑
n=1

ρ(In) ≥
∞∑

n=1

ρ
(
In ∩ [−M,M)

)
≥ ρ
(
I ∩ [−M,M)

)
.

The right-hand side tends to ∞ as M → ∞, so the left-hand side must equal ∞
also. This gives the result.

Lemma 6.10. The Lebesgue measure λ on R is σ-finite.

Proof. We have the countable union R =

∞⋃
n=1

[−n, n) with λ([−n, n) = 2n ≤ ∞.
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