MA40042 Measure Theory and Integration

Lecture 8

π -systems, λ -systems, and the uniqueness lemma

- π -systems and λ -systems
- Dynkin's $\pi \lambda$ theorem
- The uniqueness lemma

8.1 Definitions

Although we could prove the uniqueness part of Carathéodory's extension theorem directly, we can in fact prove a stronger result called 'the uniqueness lemma' by weakening our hypotheses.

An even weaker definition than a semialgebra is a π -system.

Definition 8.1. Let X be a nonempty set, and Π a nonempty collection of subsets of X. Then Π is a π -system if

1. Π is closed under finite intersections, in that if $A, B \in \Pi$ then $A \cap B \in \Pi$ also.

That's all!

Clearly every semialgebra is a $\pi\text{-system}.$ Other examples of $\pi\text{-systems}$ are

- the collection of intervals [a, b) including \emptyset (but not the infinite intervals);
- the collection of 'left-infinite' intervals $(-\infty, c]$. (It's easy to show that these generate the Borel σ -algebra.)

Our slogan will be that σ -algebras are often large and unwieldy to deal with, so it's often better to work with a π -system that generates that σ -algebra.

We do need one more set system.

Definition 8.2. Let X be a nonempty set. A collection Λ of subsets of X is called a λ -system (or a *d*-system or a *Dynkin system*) on X if it satisfies the following:

2. A is closed under complements: for $A \in \Lambda$ we have $A^{c} \in \Lambda$;

3. A is closed under countable disjoint unions: for A_1, A_2, \ldots a countably infinite sequence of disjoint sets in Λ , we have $\bigcup_{n=1}^{\infty} A_n \in \Lambda$ also.

Note that this is the same definition as a σ -algebra, except that we only look for closure under unions that are *disjoint*.

It's too easy to be a theorem, but a λ -system is closed under finite disjoint unions (by the standard 'extend with \emptyset ' argument) and $X = \emptyset^{c}$ is in every λ -system.

For \mathcal{C} any collection of subsets of X, we can define $\lambda(\mathcal{C})$, the λ -system generated by \mathcal{C} , in the usual way.

8.2 Dynkin's π - λ theorem

 π -systems and λ -systems work together in interesting ways.

Theorem 8.3. Let X be a nonempty set, and Σ a collection of subsets of X. Then Σ is a σ -algebra if and only if it is both a π -system and a λ -system.

Proof. Homework problem.

Theorem 8.4 (π - λ theorem). If a λ -system contains a π -system, it also contains the σ -algebra generated by that π -system.

More precisely, let X be a nonempty set. Suppose Π is a π -system on X, that Λ is a λ -system on X, and that $\Pi \subset \Lambda$. Then $\sigma(\Pi) \subset \Lambda$.

Proof. Consider $\lambda(\Pi)$, the λ -system generated by Π . Clearly it is a λ -system. We claim $\lambda(\Pi)$ is also a π -system. Thus by Theorem 8.3 it is a σ -algebra. But since $\sigma(\Pi)$ is the smallest σ -algebra containing Π , since every σ -algebra is a λ -system, and since Λ is λ -system containing Π we have the chain of inclusions

$$\Pi \subset \sigma(\Pi) = \lambda(\Pi) \subset \Lambda.$$

This proves the theorem.

It remains to prove the claim that $\lambda(\Pi)$ is a π -system. We need to show that for $A, B \in \lambda(\Pi)$ we also have $A \cap B \in \lambda(\Pi)$.

For step one, fix $A \in \lambda(\Pi)$, and write

$$\mathcal{L}_A = \left\{ B \subset X : A \cap B \in \lambda(\Pi) \right\}$$

for the set of B such that $A \cap B$ is indeed in $\lambda(\Pi)$. We claim that \mathcal{L}_A is a λ -system.

That $\emptyset \in \mathcal{L}_A$ is immediate. It's also clear that $A^{\mathsf{c}} \in \mathcal{L}_A$, since $A \cap A^{\mathsf{c}} = X$, and X is every λ -system, so certainly in $\lambda(\Pi)$. We also see that if $\bigcup_{n=1}^{\infty} B_n$ is a disjoint union, then

$$A \cap \bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} (A \cap B_n)$$

1. $\emptyset \in \Lambda$;

is a disjoint union also, so \mathcal{L}_A is closed under countable disjoint unions. Thus \mathcal{L}_A is indeed a λ -system.

For step two, suppose that in fact $A \in \Pi$. Then for any $B \in \Pi$ we clearly have, by the definition of a π -system, that $A \cap B \in \Pi \subset \lambda(\Pi)$. So $\Pi \subset \mathcal{L}_A$. So since \mathcal{L}_A is a λ -system containing Π , then we certainly have $\lambda(\Pi) \subset \mathcal{L}_A$. From the definition of \mathcal{L}_A , we see that we have that $A \cap B \in \lambda(\Pi)$ whenever $A \in \Pi$ and $B \in \lambda(\Pi)$.

We're halfway there. Now for step three, we swap the roles of A and B. Fix $B \in \lambda(\Pi)$, and set

$$\mathcal{L}_B = \big\{ A \subset X : A \cap B \in \lambda(\Pi) \big\}.$$

As before, this is a λ -system. But what we showed in step two was that $\Pi \subset \mathcal{L}_B$. Hence $\lambda(\Pi) \subset \mathcal{L}_B$ for any $B \in \lambda(\Pi)$.

But this is precisely the statement that for any $A, B \in \lambda(\Pi)$ we also have $A \cap B \in \lambda(\Pi)$.

8.3 Proof of the uniqueness lemma

Here we prove a result that is more general than the uniqueness part of Carathéodory's extension theorem.

Theorem 8.5 (The uniqueness lemma). Let (X, Σ, μ) be a measure space with $\Sigma = \sigma(\Pi)$ for some π -system Π , and where μ is σ -finite on Π , in that X can be written as a countable union of disjoint sets in Π of finite measure. Suppose further that there is another measure ν on (X, Σ) that is equal to μ on Π , in that $\mu(A) = \nu(A)$ for $A \in \Pi$. Then μ and ν are equal on all of Σ .

In other words, if two measures agree on a π -system, they agree on the σ -algebra generated by that π -system. (Subject to the σ -finiteness condition.)

Note that this result does not guarantee that any particular such μ exists, just that if there is such a μ , it's the only one.

The result is easy when we have that $\mu(X) = \nu(X)$ and the common value is finite, so let's do that first. This simple version is sufficient for proving uniqueness of probability measures, for example.

Proof when $\mu(X) = \nu(X) < \infty$. Write

$$\Lambda = \left\{ A \in \Sigma : \mu(A) = \nu(A) \right\}$$

for the collection of sets where μ and μ agree. By hypothesis, $\Pi \subset \Lambda$. The key point is that Λ is in fact a λ -system. (Proving this is a homework problem.) Then by the π - λ theorem, we have that $\sigma(\Pi) \subset \Lambda$, so μ and ν agree on the whole of $\Sigma = \sigma(\Pi)$.

Now for the more general case.

Proof of general case. Let B_1, B_2, \ldots be the disjoint sequence in Π each with finite measure whose union is X. Then for each B_n , we have that $\mu(B_n) = \nu(B_n)$.

Along the lines of the previous proof, write

$$\Lambda_n = \left\{ A \in \Sigma : \mu(A \cap B_n) = \nu(A \cap B_n) \right\}$$

As before, this is λ -system (check, if you must) with $\Pi \subset \Lambda_n$, so in fact $\Sigma \subset \Lambda_n$. Hence $\mu(A \cap B_n) = \nu(A \cap B_n)$ for all $A \in \Sigma$.

For any $A \in \Sigma$, we have $A = \bigcup_{n=1}^{\infty} (A \cap B_n)$ with the union disjoint. Hence

$$\mu(A) = \sum_{n=1}^{\infty} \mu(A \cap B_n) = \sum_{n=1}^{\infty} \nu(A \cap B_n) = \nu(A).$$

Matthew Aldridge m.aldridge@bath.ac.uk