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w-systems, A-systems,
and the uniqueness lemma

e 7-systems and A-systems
e Dynkin’s 7\ theorem

e The uniqueness lemma

8.1 Definitions

Although we could prove the uniqueness part of Carathéodory’s extension theorem
directly, we can in fact prove a stronger result called ‘the uniqueness lemma’ by
weakening our hypotheses.

An even weaker definition than a semialgebra is a 7-system.

Definition 8.1. Let X be a nonempty set, and II a nonempty collection of subsets
of X. Then II is a w-system if

1. II is closed under finite intersections, in that if A, B € II then AN B € II also.

That’s all!
Clearly every semialgebra is a w-system. Other examples of 7-systems are

e the collection of intervals [a, b) including & (but not the infinite intervals);

e the collection of ‘left-infinite’ intervals (—oo, c]. (It’s easy to show that these
generate the Borel o-algebra.)

Our slogan will be that o-algebras are often large and unwieldy to deal with, so
it’s often better to work with a m-system that generates that o-algebra.
We do need one more set system.

Definition 8.2. Let X be a nonempty set. A collection A of subsets of X is called
a A-system (or a d-system or a Dynkin system) on X if it satisfies the following:

1. g €A,

2. A is closed under complements: for A € A we have A® € A;

3. A is closed under countable disjoint unions: for Aj, As,... a countably infinite
sequence of disjoint sets in A, we have J7- ; A, € A also.

Note that this is the same definition as a o-algebra, except that we only look for
closure under unions that are disjoint.

It’s too easy to be a theorem, but a A-system is closed under finite disjoint unions
(by the standard ‘extend with &’ argument) and X = &€ is in every A-system.

For C any collection of subsets of X, we can define A(C), the A-system generated
by C, in the usual way.

8.2 Dynkin’s w—A\ theorem
m-systems and A-systems work together in interesting ways.

Theorem 8.3. Let X be a nonempty set, and 3 a collection of subsets of X. Then
Y. is a o-algebra if and only if it is both a w-system and a \-system.

Proof. Homework problem. O

Theorem 8.4 (7 theorem). If a A-system contains a w-system, it also contains
the o-algebra generated by that m-system.

More precisely, let X be a nonempty set. Suppose 11 is a w-system on X, that A
is a A\-system on X, and that Il C A. Then o(II) C A.

Proof. Consider A(IT), the A-system generated by II. Clearly it is a A-system. We
claim A(II) is also a w-system. Thus by Theorem 8.3 it is a o-algebra. But since
o(IT) is the smallest o-algebra containing II, since every o-algebra is a A-system,
and since A is A-system containing II we have the chain of inclusions

IT C o(IT) = A(II) C A.

This proves the theorem.

It remains to prove the claim that A(II) is a w-system. We need to show that for
A, B € A(IT) we also have AN B € A(II).

For step one, fix A € A(IT), and write

La={BCX:ANBe I}

for the set of B such that AN B is indeed in A(IT). We claim that £4 is a A-system.
That @ € L4 is immediate. It’s also clear that A€ € L4, since AN A = X, and
X is every A-system, so certainly in A\(II). We also see that if | J)~, B,, is a disjoint

union, then
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is a disjoint union also, so L4 is closed under countable disjoint unions. Thus £ 4
is indeed a A-system.

For step two, suppose that in fact A € II. Then for any B € II we clearly have,
by the definition of a m-system, that AN B € I C A\(IT). So II C L4. So since L4
is a A-system containing II, then we certainly have A\(IT) C £ 4. From the definition
of L4, we see that we have that AN B € \(IT) whenever A € IT and B € A(I).

We're halfway there. Now for step three, we swap the roles of A and B.

Fix B € A\(II), and set

Lp={ACX:ANBeI)}.

As before, this is a A-system. But what we showed in step two was that II C Lp.
Hence A(IT) C Lp for any B € \(II).

But this is precisely the statement that for any A, B € A(II) we also have ANB €
A(II). O

8.3 Proof of the uniqueness lemma

Here we prove a result that is more general than the uniqueness part of
Carathéodory’s extension theorem.

Theorem 8.5 (The uniqueness lemma). Let (X,%, ) be a measure space with
¥ = o(Il) for some w-system 11, and where p is o-finite on I, in that X can
be written as a countable union of disjoint sets in Il of finite measure. Suppose
further that there is another measure v on (X,X) that is equal to u on I1, in that
w(A) =v(A) for A€ Il. Then p and v are equal on all of .

In other words, if two measures agree on a m-system, they agree on the o-algebra
generated by that m-system. (Subject to the o-finiteness condition.)

Note that this result does not guarantee that any particular such u exists, just
that if there is such a p, it’s the only one.

The result is easy when we have that u(X) = v(X) and the common value is
finite, so let’s do that first. This simple version is sufficient for proving uniqueness
of probability measures, for example.

Proof when u(X) = v(X) < co. Write
A={AeX:puA) =v4)}

for the collection of sets where p and p agree. By hypothesis, IT C A. The key
point is that A is in fact a A-system. (Proving this is a homework problem.) Then
by the m—A theorem, we have that o(II) C A, so 1 and v agree on the whole of
¥ =o(I). O

Now for the more general case.

Proof of general case. Let By, By, ... be the disjoint sequence in II each with finite
measure whose union is X. Then for each B,,, we have that u(B,,) = v(B,).
Along the lines of the previous proof, write

A,={AeX:u(ANB,)=v(ANB,)}.

As before, this is A-system (check, if you must) with IT C A,,, so in fact ¥ C A,,.
Hence p(ANB,) =v(ANB,) for all A € 3.
For any A € ¥, we have A = J,_, (AN B,,) with the union disjoint. Hence

w(A)=> (AN B,) =Y v(ANB,) = v(A). O
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