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Lecture 8

π-systems, λ-systems,
and the uniqueness lemma

• π-systems and λ-systems

• Dynkin’s π–λ theorem

• The uniqueness lemma

8.1 Definitions

Although we could prove the uniqueness part of Carathéodory’s extension theorem
directly, we can in fact prove a stronger result called ‘the uniqueness lemma’ by
weakening our hypotheses.

An even weaker definition than a semialgebra is a π-system.

Definition 8.1. Let X be a nonempty set, and Π a nonempty collection of subsets
of X. Then Π is a π-system if

1. Π is closed under finite intersections, in that if A,B ∈ Π then A∩B ∈ Π also.

That’s all!
Clearly every semialgebra is a π-system. Other examples of π-systems are

• the collection of intervals [a, b) including ∅ (but not the infinite intervals);

• the collection of ‘left-infinite’ intervals (−∞, c]. (It’s easy to show that these
generate the Borel σ-algebra.)

Our slogan will be that σ-algebras are often large and unwieldy to deal with, so
it’s often better to work with a π-system that generates that σ-algebra.

We do need one more set system.

Definition 8.2. Let X be a nonempty set. A collection Λ of subsets of X is called
a λ-system (or a d-system or a Dynkin system) on X if it satisfies the following:

1. ∅ ∈ Λ;

2. Λ is closed under complements: for A ∈ Λ we have Ac ∈ Λ;

3. Λ is closed under countable disjoint unions: for A1, A2, . . . a countably infinite
sequence of disjoint sets in Λ, we have

⋃∞
n=1An ∈ Λ also.

Note that this is the same definition as a σ-algebra, except that we only look for
closure under unions that are disjoint.

It’s too easy to be a theorem, but a λ-system is closed under finite disjoint unions
(by the standard ‘extend with ∅’ argument) and X = ∅c is in every λ-system.

For C any collection of subsets of X, we can define λ(C), the λ-system generated
by C, in the usual way.

8.2 Dynkin’s π–λ theorem

π-systems and λ-systems work together in interesting ways.

Theorem 8.3. Let X be a nonempty set, and Σ a collection of subsets of X. Then
Σ is a σ-algebra if and only if it is both a π-system and a λ-system.

Proof. Homework problem.

Theorem 8.4 (π–λ theorem). If a λ-system contains a π-system, it also contains
the σ-algebra generated by that π-system.

More precisely, let X be a nonempty set. Suppose Π is a π-system on X, that Λ
is a λ-system on X, and that Π ⊂ Λ. Then σ(Π) ⊂ Λ.

Proof. Consider λ(Π), the λ-system generated by Π. Clearly it is a λ-system. We
claim λ(Π) is also a π-system. Thus by Theorem 8.3 it is a σ-algebra. But since
σ(Π) is the smallest σ-algebra containing Π, since every σ-algebra is a λ-system,
and since Λ is λ-system containing Π we have the chain of inclusions

Π ⊂ σ(Π) = λ(Π) ⊂ Λ.

This proves the theorem.
It remains to prove the claim that λ(Π) is a π-system. We need to show that for

A,B ∈ λ(Π) we also have A ∩B ∈ λ(Π).
For step one, fix A ∈ λ(Π), and write

LA =
{
B ⊂ X : A ∩B ∈ λ(Π)

}
for the set of B such that A∩B is indeed in λ(Π). We claim that LA is a λ-system.

That ∅ ∈ LA is immediate. It’s also clear that Ac ∈ LA, since A ∩Ac = X, and
X is every λ-system, so certainly in λ(Π). We also see that if

⋃∞
n=1Bn is a disjoint

union, then

A ∩
∞⋃

n=1

Bn =

∞⋃
n=1

(A ∩Bn)



is a disjoint union also, so LA is closed under countable disjoint unions. Thus LA

is indeed a λ-system.
For step two, suppose that in fact A ∈ Π. Then for any B ∈ Π we clearly have,

by the definition of a π-system, that A ∩B ∈ Π ⊂ λ(Π). So Π ⊂ LA. So since LA

is a λ-system containing Π, then we certainly have λ(Π) ⊂ LA. From the definition
of LA, we see that we have that A ∩B ∈ λ(Π) whenever A ∈ Π and B ∈ λ(Π).

We’re halfway there. Now for step three, we swap the roles of A and B.
Fix B ∈ λ(Π), and set

LB =
{
A ⊂ X : A ∩B ∈ λ(Π)

}
.

As before, this is a λ-system. But what we showed in step two was that Π ⊂ LB .
Hence λ(Π) ⊂ LB for any B ∈ λ(Π).

But this is precisely the statement that for any A,B ∈ λ(Π) we also have A∩B ∈
λ(Π).

8.3 Proof of the uniqueness lemma

Here we prove a result that is more general than the uniqueness part of
Carathéodory’s extension theorem.

Theorem 8.5 (The uniqueness lemma). Let (X,Σ, µ) be a measure space with
Σ = σ(Π) for some π-system Π, and where µ is σ-finite on Π, in that X can
be written as a countable union of disjoint sets in Π of finite measure. Suppose
further that there is another measure ν on (X,Σ) that is equal to µ on Π, in that
µ(A) = ν(A) for A ∈ Π. Then µ and ν are equal on all of Σ.

In other words, if two measures agree on a π-system, they agree on the σ-algebra
generated by that π-system. (Subject to the σ-finiteness condition.)

Note that this result does not guarantee that any particular such µ exists, just
that if there is such a µ, it’s the only one.

The result is easy when we have that µ(X) = ν(X) and the common value is
finite, so let’s do that first. This simple version is sufficient for proving uniqueness
of probability measures, for example.

Proof when µ(X) = ν(X) <∞. Write

Λ =
{
A ∈ Σ : µ(A) = ν(A)

}
for the collection of sets where µ and µ agree. By hypothesis, Π ⊂ Λ. The key
point is that Λ is in fact a λ-system. (Proving this is a homework problem.) Then
by the π–λ theorem, we have that σ(Π) ⊂ Λ, so µ and ν agree on the whole of
Σ = σ(Π).

Now for the more general case.

Proof of general case. Let B1, B2, . . . be the disjoint sequence in Π each with finite
measure whose union is X. Then for each Bn, we have that µ(Bn) = ν(Bn).

Along the lines of the previous proof, write

Λn =
{
A ∈ Σ : µ(A ∩Bn) = ν(A ∩Bn)

}
.

As before, this is λ-system (check, if you must) with Π ⊂ Λn, so in fact Σ ⊂ Λn.
Hence µ(A ∩Bn) = ν(A ∩Bn) for all A ∈ Σ.

For any A ∈ Σ, we have A =
⋃∞

n=1(A ∩Bn) with the union disjoint. Hence

µ(A) =

∞∑
n=1

µ(A ∩Bn) =

∞∑
n=1

ν(A ∩Bn) = ν(A).
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