MA40042 Measure Theory and Integration

Lecture 9
More on the Lebesgue measure

e T-systems generating B

e Translation invariance
and uniqueness

e The Vitali nonmeasurable set

9.1 m-systems generating the Borel o-algebra
A quick note before we start proper.

e Recall that the collection of intervals Z (including the infinite intervals and
the empty set) generate the Borel o-algebra B. Since Z is a semialgebra, it is
certainly a m-system.

e Let J be the collection of intervals [a,b) including @, but not the infinite
intervals. This is a 7-system, since

[a,b) N [c,d) = [max{a, c}, min{b, d}),

where we interpret [a,b) as @ for b < a. Further, J generates B, as can be
seen by examining the proof of Theorem 2.7.

e Let Jp be the collection of intervals [a,b) with a,b € Q including &. For
exactly the same reasons, Jg is a m-system generating B.

9.2 Translation invariance

An important fact about the Lebesgue measure is this: if you pick up an object and
move it somewhere else, it still has the same volume. This is translation invariance.

We’ll do all this for the one-dimensional case, but it’s very easy to generalise the
to higher dimensions (just a little more notation).

Theorem 9.1. The Lebesque measure X\ is translation invariant.
More precisely: suppose A € B andy € R, and write

A—|—y:{x—|—y:x€A};
then A4y € B, and AM(A+1y) = A(A).

Proof. For fixed y, write
B,={A:A+yeB}

We know that B is generated by the intervals Z, and similarly B, is generated by
the shifted intervals

Iy, ={I:I+yel}={I—-y:1€1}.

But since [a,b) —y = [a — y,b — y), we see that T = Z,,, and hence that B = B,,.
Now define p: B — [0,00] by u(A) = A(A+y). We want to show that u is equal
to A.
First, u is indeed a measure. This is because (&) = A(@) = 0, and since

U(An+y): (UAn> + v,

we see that p inherits countable additivity from A.
Second, we have

u([a,b)) = /\([a,b) +y) = /\([a+y,b+y))
=b+y) —(a+y)=b—a=2A(a,b)).

So A and p agree on J. But J is a w-system that generates B, so by the uniqueness
lemma (and the fact that the Lebesgue measure is o-finite on J) we have that p
and \ agree on the whole of B. O

Similarly, one can prove that the Lebesgue measure is rotationally invariant,
although we won’t do that here.

We could have defined the Lebesgue measure differently, by starting by demand-
ing that it be translation invariant.

Theorem 9.2. The Lebesgue measure is the unique translation invariant measure
on (R,B) subject to ;1([0,1)) = 1.

If we replace the condition with ,u([O, 1)) < 00, then we’d end up with a multiple
of the Lebesgue measure. Picking u([O, 1)) = 1 is like choosing units.

Proof. Let p be a translation invariant measure on (R, B) with ,u([O, 1)) =1.
First, clearly A\ and p agree on [0,1) and &.
Second, we have, for p € N that

1([0,p)) = p([0,1)U[L,2)U---Up—1,p))
= u([0,1)) + u([1,2)) + -+ u(lp - 1,p)) =pu(0,1)) =p.



So A and p agree on the intervals [0, p).
Third, for ¢ € N we have

1=p(0, 1)) u({oj}) U E%) U U [Tl))

{0 3) () o5 0) =)

So ,u([O7 1/q)) = 1/q. Combining this with the previous part, we see that A and u
agree on the intervals of the form [0, p/q).

Fourth, by translation invariance, we have that A\ and p agree on the entirety
of Jg. But this is a 7-system generating 3, on which A is o-finite. Applying the
uniqueness lemma gives the result. O

The idea we have made use of is this: checking measures agree on a g-algebra is
hard; checking they agree on a w-system is easy.

9.3 A Lebesgue nonmeasurable set

The reason we had to go to the effort of defining the Borel o-algebra was that we
can’t define the Lebesgue measure for the entire of R?.

The famous Banach-Tarski ‘paradox’ — where the unit sphere in R? is cut into
five pieces that are then rearranged into two copies of the sphere — gives a famous
example, but requires group theory not assumed for this course. We give a simpler
example.

Theorem 9.3. There does not exist a translation invariant measure on (R, P(R))
with A([0,1)) nonzero and finite.

Before we prove this, let’s just note some corollaries that follow easily from this
when joined with other results from the course:

e The Lebesgue measure cannot be extended to a measure on (R, ’P(R)).

e There are subsets of R that are not in the Borel o-algebra (or even its com-
pletion).

e There are subsets of R that are not Carathéodory measurable with respect the
Lebesgue outer measure \*.

Proof. We work on the set [0,1). We define a relation ~ on [0,1) as follows: we

write x ~ y if x — y € Q. We claim ~ is in fact an equivalence relation on [0, 1).
We now check this. Symmetry: if z —y = a € Q then y —z = —a € Q.

Reflexivity: z —x = 0 € Q. Transitivity: if z —y=a € Q and y — 2 = b € Q then

r—z=zx—y+y—z=a+beQ.

Thus ~, as an equivalence relation, partitions [0, 1) into equivalence classes. We
define a set V' C [0, 1], called the Vitali set, by taking one element from equivalence
class. (Set theorists might like to note we are using the axiom of choice here — this
is unavoidable.)

For ¢ € QN [-1,1), consider the sets V 4+ ¢q. We claim that the union
Ugean(=1,17(V + @) is countable and disjoint and that

oyc |J V+gcl-12).

q€QN[-1,1)

It’s trivial that the union is countable and a subset of [—1,2). To see the union
covers [0, 1), note that if y is the representative in V of ’s equivalence class, then
x —y = qis rational, so x = y+ ¢ is in V +¢. For disjointness, suppose x isin V +¢q
and V +r;then x =y+qg =2+ r for some y,z € V; but theny —z=r—q € Q,
meaning y and z are in the same equivalence class; but since we only have one
representative from each equivalence class, we must have y = z.

Suppose that p is a measure on (R, P(R)). We then have by monotonicity that

p(0,)) < Y wV+q) <u(-1,2).
qeQn[-1,1)
Suppose further that y is translation invariant, then u(V) = u(V + ¢). Then
p(O0)< D> wV) <u((-1,2)),
q€QN[-1,1)

which (if we use the rule 0 x co = 0) we can write as

p([0,1)) < 0o x (V) < p([-1,2)),

Write 4([0,1)) = M. Then by translation invariance we have p([—1,2)) = 3M,
and so
M <oox u(V)<3M.

But the only solutions to this are M = 0 WITH p(V) = 0, or k = oo with any
positive or infinite p(V'). This proves the theorem. O
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