MA40042 Measure Theory and Integration

Problem Sheet 1

Solutions should be submitted to the MA40042 pigeonhole by 1700 on Monday 10 October.

> Work will be returned and answers discussed in the problems class on Tuesday 11 October.

- 1. Let X be a nonempty set. Show that the following are σ -algebras on X:
 - (a) the powerset of X;
 - (b) the trivial σ -algebra;
 - (c) $\{\emptyset, A, A^{c}, X\}$ for some $A \subset X$;
 - (d) $\{A \subset X : A \text{ is countable or co-countable}\}.$
- 2. Let (X, Σ) be a measurable space.
 - (a) Show that the following sets are in Σ :
 - i. X;
 - ii. $\bigcup_{n=1}^{N} A_n$, where A_1, A_2, \ldots, A_N is a finite sequence of sets in Σ ;
 - iii. $\bigcap_{n=1}^{\infty} A_n$, where A_1, A_2, \ldots is a countably infinite sequence of sets in Σ ;
 - iv. $\bigcap_{n=1}^{N} A_n$, where A_1, A_2, \ldots, A_N is a finite sequence of sets in Σ (give two proofs if you can);
 - v. $B \setminus A$, where $A, B \in \Sigma$ with $A \subset B$;
 - vi. $A \bigtriangleup B$, where $A, B \in \Sigma$.
 - (b) Let A_1, A_2, \ldots be a countably infinite sequence of sets in Σ .
 - i. Write $A_{i.o.}$ for the set of points $x \in X$ in infinitely many of the A_n s. (In probability settings, this is the event that the events A_n occur 'infinitely often'.) Show that $A_{i.o.} \in \Sigma$.
 - ii. Write A_{ev} for the set of points $x \in X$ in every A_n for n sufficiently large. (In probability settings, this is the event that the events A_n occur 'eventually' although 'eventually always' might be a better term.) Show that $A_{\mathrm{ev}} \in \Sigma$. (Give two proofs if you can.)

- 3. (a) Show that every algebra on a finite set X is a σ -algebra.
 - (b) Let \mathcal{C} be a collection of subsets of a nonempty set X.
 - i. Give the 'obvious' definition of $a(\mathcal{C})$, the algebra generated by \mathcal{C} .
 - ii. Briefly show that $a(\mathcal{C})$ is indeed an algebra on X.
 - (c) Let X be a nonempty set, and let

 $\mathcal{C} = \big\{ \{x\} : x \in X \big\}$

be the collection of singletons in X. Explain what $\sigma(\mathcal{C})$ and $a(\mathcal{C})$ are when X is

- i. finite,
- ii. countable infinite,
- iii. uncountably infinite.
- (You may find the word 'co-finite' useful.)
- (d) Hence, give an concrete example of a set X and an algebra on X that is not a σ -algebra. Give an explicit counterexample to it being a σ -algebra.
- 4. (a) We work in \mathbb{R}^d .
 - i. Show that a union of open sets is open.
 - ii. Show that an intersection of closed sets is closed.
 - (b) Let \mathcal{K} denote the collection of compact sets in \mathbb{R} . Show that $\sigma(\mathcal{K}) = \mathcal{B}(\mathbb{R}^d)$.

Matthew Aldridge m.aldridge@bath.ac.uk