MA40042 Measure Theory and Integration

Solutions: Sheet 3, Questions 2 and 3

2. Our aim is to construct a probability space representing an infinite sequence of coin tosses. Let $\Omega = \{H, T\}^{\mathbb{N}},$ so $\omega = (\omega_1, \omega_2, ...) \in \Omega$ represents an infinite string of heads and tails. Given $\mathbf{x} \in \{\text{H}, \text{T}\}^n$ for some n, write $C(\mathbf{x})$ for the cylinder set

$$
C(\mathbf{x}) = \{ \boldsymbol{\omega} \in \Omega : \omega_1 = x_1, \omega_2 = x_2, \ldots, \omega_n = x_n \}.
$$

Write C for the empty set and all cylinder sets $C(\mathbf{x})$ for $\mathbf{x} \in {\{H, T\}}^n$ for any $n \in \mathbb{N}$.

(a) Show that C is a semialgebra on Ω

Solution: We have three things to check.

- 1. That $\emptyset \in \mathcal{C}$ is immediate.
- 2. Intersections with the empty set are empty, so consider $C(\mathbf{x}) \cap$ $C(\mathbf{y})$. This is empty if for some *i* we have $x_i \neq y_i$, so it's only nonempty is **x** is a prefix of **y**, (or vice versa, but without loss of generality let's say **x** is the prefix). In that situation, $C(\mathbf{x}) \cap$ $C(\mathbf{y}) = C(\mathbf{y})$. For example, $C(\mathbf{H}) \cap C(\mathbf{HTT}) = C(\mathbf{HTT})$.
- 3. Suppose $\mathbf{x} \in \{\text{H}, \text{T}\}^n$. Then we have

$$
C(\mathbf{x})^{\mathsf{c}} = \bigcup_{\substack{\mathbf{y} \in \{\mathtt{H},\mathtt{T}\}^n \\ \mathbf{y} \neq \mathbf{x}}} C(\mathbf{y}),
$$

with the union finite and disjoint.

Define $\pi: \mathcal{C} \to [0, \infty]$ by $\pi(\varnothing) = 0$ and for $\mathbf{x} \in \{\text{H}, \text{T}\}^n$ put $\pi(C(\mathbf{x})) = 2^{-n}$. (b) Show that π is finitely additive on disjoint sets in C.

Solution: If we have a cylinder set $C(\mathbf{x})$ with **x** of length n, we can instead deal with strings of length $n + k$ by writing

$$
C(\mathbf{x}) = \bigcup_{\mathbf{y} \in \{\mathtt{H},\mathtt{T}\}^k} C(\mathbf{x},\mathbf{y}),
$$

where (x, y) denotes the concatenation of x and y. Note that the union is disjoint and finitely additive, in that the premeasures are

$$
2^k \pi(C(\mathbf{x}, \mathbf{y})) = 2^k 2^{-(n+k)} = 2^{-n}.
$$

Suppose then we have a finite disjoint union $C(\mathbf{z}) = \bigcup_{n=1}^{N} C(\mathbf{x}_n)$ with **z** of length m. Note that each x_n has **z** as a prefix. Let $m + j_n$ be the length of the string x_n , and $m + i$ be longest length of any string. Then use the above to rewrite each of $C(\mathbf{x}_n)$ s in terms of strings of length $m + i$. By the above this preserves the premeasure. Then we have

$$
C(\mathbf{z}) = \bigcup_{n=1}^N \bigcup_{\mathbf{y} \in \{\mathtt{H},\mathtt{T}\}^{j-j_n}} C(\mathbf{x}_n,\mathbf{y}) = \bigcup_{\mathbf{w} \in \{\mathtt{H},\mathtt{T}\}^{j-m}} C(\mathbf{z},\mathbf{w}).
$$

Thus the premeasure is additive as above.

(c) Show that no cylinder set can be written as a countably infinite disjoint union of cylinder sets. (This is quite hard. If you can't give a proof, try to sketch the general idea, or even just explain why one might expect this to be true.)

Solution: The idea is that $\boldsymbol{\omega} \in C(\mathbf{x})$ is a condition only on the first n coinflips of ω for some n, whereas whether ω is in a countably infinite disjoint union could not be determined by any finite prefix of ω .

Assume, seeking a contradiction, that $C(\mathbf{x}) = \bigcup_{n=1}^{\infty} C(\mathbf{x}^{(n)})$, with the union a disjoint one. Thus the sets $B_N = C(\mathbf{x}) \setminus \bigcup_{n=1}^N C(\mathbf{x}^{(n)})$ are nonempty, with $B_1 \supset B_2 \supset \cdots$. Further whether $\omega \in B_N$ is determined by a finite prefix of ω . Then there exists a z_1 , either H or T, such that every B_N contains a string starting $\omega_1 = z_1$. Fix such a z_1 . But by repeating, there exists a z_2 such that every B_N contains a string starting $(\omega_1, \omega_2) = (z_1, z_2)$. This way, we can produce an arbitrarily long string prefix that features in every B_N . But since whether $\omega \in B_N$ can be decided by a finite prefix, by going beyond that finite number, we see that $\bigcap_{n=1}^{\infty} B_n$ is nonempty. Thus $C(\mathbf{x}) \setminus$ $\bigcup_{n=1}^{\infty} C(\mathbf{x}^{(n)})$ is nonempty, and we have out contradiction.

(d) Deduce that π is a premeasure on C.

Solution: That $\pi(\emptyset) = 0$ is immediate.

By (c) , any countable disjoint union in $\mathcal C$ can only include finitely many nonempty sets (perhaps with repetition), so finite additivity proves π is a premeasure.

Hence, by Carathéodory's extension theorem, π can be extended to a measure $\mathbb P$ on $(\Omega, \sigma(\mathcal C)).$

(e) Show that any such $\mathbb P$ is a probability measure.

Solution: Clearly $\mathbb{P}(\Omega) = \mathbb{P}(C(H)) + \mathbb{P}(C(T)) = \pi(C(H)) + \pi(C(T)) = 1/2 + 1/2 = 1.$

(f) Show that $\mathbb P$ is the unique extension of π .

Solution: Carathéodory's extension theorem requires that the measure $\mathbb P$ is σ -finite, which it is, since $\mathbb P(\Omega) = 1$.

3. Let (X, Σ, μ) and (Y, Π, ν) be two measure spaces. Write

 $S = \{A \times B : A \in \Sigma, B \in \Pi\}$

and put $\Sigma \otimes \Pi = \sigma(S)$ for the σ -algebra on $X \times Y$ generated by S.

(a) Suppose X and Y are countable. What is $\mathcal{P}(X) \otimes \mathcal{P}(Y)$?

Solution: $\mathcal{P}(X) \otimes \mathcal{P}(Y) = \mathcal{P}(X \times Y)$

(b) Suppose $X = Y = \mathbb{R}$. Show that $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}) = \mathcal{B}(\mathbb{R}^2)$.

Solution: First let's show $\mathcal{B}(\mathbb{R}^2) \subset \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$, for which it suffices to show that $\mathcal{I}_2 \subset \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$. This is obviously true.

Second we need to show $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}) \subset \mathcal{B}(\mathbb{R}^2)$. Set

 $\mathcal{C} := \{ A \in \mathcal{B}(\mathbb{R}) : A \times \mathbb{R} \in B(\mathbb{R}^2) \}.$

It's easy to check that $\mathcal C$ is a σ -algebra, and also that it contains all one-dimensional open sets. Hence $\mathcal{C} \subset \mathcal{B}(\mathbb{R}^2)$. Similarly, we can set

 $\mathcal{D} := \{ B \in \mathcal{B}(\mathbb{R}) : \mathbb{R} \times B \in B(\mathbb{R}^2) \},\$

and see that $\mathcal D$ is a σ -algebra with $\mathcal D \subset B(\mathbb{R}^2)$. But $\mathcal C \cap \mathcal D = \mathcal B(\mathbb{R}) \otimes$ $\mathcal{B}(\mathbb{R}),$ so $\mathcal{B}(\mathbb{R})\otimes\mathcal{B}(\mathbb{R})\subset\mathcal{B}(\mathbb{R}^2)$, as desired.

(c) Show, in general, that S is a semialgebra on $X \times Y$.

Write $\pi(A \times B) = \mu(A)\nu(B)$. You may assume (and will probably prove later in the course) that π is a premeasure on (X, \mathcal{S}) . Hence π extends to a measure on $\Sigma \otimes \Pi$, which is called the *product measure* and written $\mu \times \nu$.

(d) Show that if μ and ν are both σ -finite, then the product measure is unique.

Solution: We need to show that the product measure $\mu \times \nu$ is σ -finite. By assumption, there exist A_1, A_2, \ldots in Σ with union X and measures $\mu(A_n) < \infty$, and B_1, B_2, \ldots in Π with union Y and measures $\nu(B_m) < \infty$. Then we have

$$
\bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} (A_n \times B_m) = X \times Y,
$$

where the union is countable and

$$
(\mu \times \nu)(A_n \times B_m) = \mu(A_n)\nu(B_m) < \infty.
$$

(e) Let X and Y be countable, and endowed with their powersets and counting measures. What is the corresponding product measure.

Solution: Counting measure on $X \times Y$.

(f) Outline (without proofs) an alternative construction of the Lebesgue measure on \mathbb{R}^d for $d \geq 2$.

Solution: Define the Lebesgue measure λ on $(\mathbb{R}, \mathcal{B})$ as in lectures. Then inductively define the Lebesgue measure λ_{d+1} on

$$
\left(\mathbb{R}^d\times\mathbb{R},\mathcal{B}(\mathbb{R}^d)\otimes\mathcal{B}\right)=\left(\mathbb{R}^{d+1},\mathcal{B}(\mathbb{R}^{d+1})\right)
$$

as the produce measure $\lambda_d \times \lambda$.