
MA40042 Measure Theory and Integration

Solutions: Sheet 3, Questions 2 and 3

2. Our aim is to construct a probability space representing an infinite sequence
of coin tosses. Let Ω = {H, T}N, so ω = (ω1, ω2, . . . ) ∈ Ω represents an infinite
string of heads and tails. Given x ∈ {H, T}n for some n, write C(x) for the
cylinder set

C(x) = {ω ∈ Ω : ω1 = x1, ω2 = x2, . . . , ωn = xn}.

Write C for the empty set and all cylinder sets C(x) for x ∈ {H, T}n for any
n ∈ N.

(a) Show that C is a semialgebra on Ω

Solution: We have three things to check.

1. That ∅ ∈ C is immediate.

2. Intersections with the empty set are empty, so consider C(x) ∩
C(y). This is empty if for some i we have xi 6= yi, so it’s only
nonempty is x is a prefix of y, (or vice versa, but without loss
of generality let’s say x is the prefix). In that situation, C(x) ∩
C(y) = C(y). For example, C(H) ∩ C(HTT) = C(HTT).

3. Suppose x ∈ {H, T}n. Then we have

C(x)c =
⋃

y∈{H,T}n
y 6=x

C(y),

with the union finite and disjoint.

Define π : C → [0,∞] by π(∅) = 0 and for x ∈ {H, T}n put π
(
C(x)

)
= 2−n.

(b) Show that π is finitely additive on disjoint sets in C.

Solution: If we have a cylinder set C(x) with x of length n, we can
instead deal with strings of length n+ k by writing

C(x) =
⋃

y∈{H,T}k
C(x,y),

where (x,y) denotes the concatenation of x and y. Note that the
union is disjoint and finitely additive, in that the premeasures are

2kπ
(
C(x,y)

)
= 2k2−(n+k) = 2−n.

Suppose then we have a finite disjoint union C(z) =
⋃N

n=1 C(xn)
with z of length m. Note that each xn has z as a prefix. Let m+jn be
the length of the string xn, and m+ j be longest length of any string.
Then use the above to rewrite each of C(xn)s in terms of strings of
length m+ j. By the above this preserves the premeasure. Then we
have

C(z) =

N⋃
n=1

⋃
y∈{H,T}j−jn

C(xn,y) =
⋃

w∈{H,T}j−m

C(z,w).

Thus the premeasure is additive as above.

(c) Show that no cylinder set can be written as a countably infinite disjoint
union of cylinder sets. (This is quite hard. If you can’t give a proof, try
to sketch the general idea, or even just explain why one might expect this
to be true.)

Solution: The idea is that ω ∈ C(x) is a condition only on the first n
coinflips of ω for some n, whereas whether ω is in a countably infinite
disjoint union could not be determined by any finite prefix of ω.

Assume, seeking a contradiction, that C(x) =
⋃∞

n=1 C(x(n)), with

the union a disjoint one. Thus the sets BN = C(x) \
⋃N

n=1 C(x(n))
are nonempty, with B1 ⊃ B2 ⊃ · · · . Further whether ω ∈ BN is
determined by a finite prefix of ω. Then there exists a z1, either H or
T, such that every BN contains a string starting ω1 = z1. Fix such a
z1. But by repeating, there exists a z2 such that every BN contains
a string starting (ω1, ω2) = (z1, z2). This way, we can produce an
arbitrarily long string prefix that features in every BN . But since
whether ω ∈ BN can be decided by a finite prefix, by going beyond
that finite number, we see that

⋂∞
n=1Bn is nonempty. Thus C(x) \⋃∞

n=1 C(x(n)) is nonempty, and we have out contradiction.



(d) Deduce that π is a premeasure on C.

Solution: That π(∅) = 0 is immediate.

By (c), any countable disjoint union in C can only include finitely
many nonempty sets (perhaps with repetition), so finite additivity
proves π is a premeasure.

Hence, by Carathéodory’s extension theorem, π can be extended to a measure
P on (Ω, σ(C)

)
.

(e) Show that any such P is a probability measure.

Solution: Clearly

P(Ω) = P
(
C(H)

)
+ P

(
C(T)

)
= π

(
C(H)

)
+ π

(
C(T)

)
= 1/2 + 1/2 = 1.

(f) Show that P is the unique extension of π.

Solution: Carathéodory’s extension theorem requires that the mea-
sure P is σ-finite, which it is, since P(Ω) = 1.

3. Let (X,Σ, µ) and (Y,Π, ν) be two measure spaces. Write

S = {A×B : A ∈ Σ, B ∈ Π}

and put Σ⊗Π = σ(S) for the σ-algebra on X × Y generated by S.

(a) Suppose X and Y are countable. What is P(X)⊗ P(Y )?

Solution: P(X)⊗ P(Y ) = P(X × Y )

(b) Suppose X = Y = R. Show that B(R)⊗ B(R) = B(R2).

Solution: First let’s show B(R2) ⊂ B(R)⊗B(R), for which it suffices
to show that I2 ⊂ B(R)⊗ B(R). This is obviously true.

Second we need to show B(R)⊗ B(R) ⊂ B(R2). Set

C :=
{
A ∈ B(R) : A× R ∈ B(R2)

}
.

It’s easy to check that C is a σ-algebra, and also that it contains all
one-dimensional open sets. Hence C ⊂ B(R2). Similarly, we can set

D :=
{
B ∈ B(R) : R×B ∈ B(R2)

}
,

and see that D is a σ-algebra with D ⊂ B(R2). But C ∩ D = B(R)⊗
B(R), so B(R)⊗ B(R) ⊂ B(R2), as desired.

(c) Show, in general, that S is a semialgebra on X × Y .

Solution:

1. ∅ = ∅×∅.

2. (A1 ×B1) ∩ (A2 ×B2) = (A1 ∩A2)× (B1 ∩B2).

3. (A×B)c = (Ac ×B) ∪ (A×Bc) ∪ (Ac ×Bc).

Write π(A×B) = µ(A)ν(B). You may assume (and will probably prove later
in the course) that π is a premeasure on (X,S). Hence π extends to a measure
on Σ⊗Π, which is called the product measure and written µ× ν.

(d) Show that if µ and ν are both σ-finite, then the product measure is unique.

Solution: We need to show that the product measure µ×ν is σ-finite.

By assumption, there exist A1, A2, . . . in Σ with union X and mea-
sures µ(An) < ∞, and B1, B2, . . . in Π with union Y and measures
ν(Bm) <∞. Then we have

∞⋃
n=1

∞⋃
m=1

(An ×Bm) = X × Y,

where the union is countable and

(µ× ν)(An ×Bm) = µ(An)ν(Bm) <∞.

(e) LetX and Y be countable, and endowed with their powersets and counting
measures. What is the corresponding product measure.

Solution: Counting measure on X × Y .

(f) Outline (without proofs) an alternative construction of the Lebesgue mea-
sure on Rd for d ≥ 2.

Solution: Define the Lebesgue measure λ on (R,B) as in lectures.
Then inductively define the Lebesgue measure λd+1 on(

Rd × R,B(Rd)⊗ B
)

=
(
Rd+1,B(Rd+1)

)
as the produce measure λd × λ.


