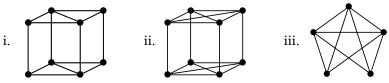
Topics in Discrete Mathematics Part 2: Introduction to Graph Theory

Past Exam Question

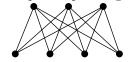
Solutions are available online at http://www.maths.bris.ac.uk/~mampa/teaching/ although you are strongly encouraged to attempt the question first without looking at the solutions.

The following was Question 1 in the May–June 2013 exam for Topics in Discrete Mathematics. The exam contained three questions, of which two had to be answered in 1 hour and 30 minutes. So you should be trying to do this question in 35 or 40 minutes.

- 1. (a) Let G = (V, E) be a graph. Define
 - i. (2 marks) a walk,
 - ii. (2 marks) a trail,
 - iii. (2 marks) a cycle,
 - iv. (2 marks) a circuit,
 - v. (2 marks) an Eulerian circuit.
 - (b) (10 marks) For each of the following four graphs, decide if it has an Eulerain trail¹, an Eulerian circuit, both, or neither. Give a brief justification in each case.



- iv. The complete graph K_n for $n \ge 4$ even.
- (c) i. (2 marks) Define what it means for a graph to have an Hamiltonian cycle.
 - ii. (6 marks) Consider the complete bipartite graph $K_{3,4}$.



Prove that this graph does not have a Hamiltonian cycle.

- (d) (8 marks) Let G = (V, E) be a connected bipartite graph with |V| = n and $|E| = m \ge 2$. Prove that if G is planar, then $m \le 2n 4$.
- (e) i. (2 marks) Define the adjacency matrix of an *n*-vertex graph G = (V, E).
 - ii. (2 marks) For a graph G = (V, E), we define the complement $\overline{G} = (V, \overline{E})$, where $e \in \overline{E}$ if and only if $e \notin E$. Let G be a graph with n vertices, and let A be its adjacency matrix. Write down the adjacency matrix \overline{A} of its complement in terms of A and M_n , wher M_n is the adjacency matrix of the complete graph K_n .
 - iii. (2 marks) Define what it means for two graphs G_1, G_2 to be isomorphic.
 - iv. (8 marks) We say that G is self-complementary if G is isomorphic to \overline{G} . Prove that if G is self-complementary, then $n \equiv 0$ or 1 (mod 4).

Matthew Aldridge m.aldridge@bristol.ac.uk

 $^{^1\}mathrm{An}\ Eulerian\ trail$ is a trail that uses every edge. For more, see Question 5. (b) on the Problem Sheet.