Topics in Discrete Mathematics Part 2: Introduction to Graph Theory
 Linear Algebra Facts

The following facts from linear algebra will be used without proof. Throughout, $\mathbf{A}=\left(a_{i j}\right)$ is an $n \times n$ real matrix.

1. If for some $\lambda \in \mathbb{C}$ and some nonzero vector \mathbf{v} we have $\mathrm{A} \mathbf{v}=\lambda \mathbf{v}$, then we say λ is an eigenvalue of A , and \mathbf{v} is an associated eigenvector.
2. Eigenvalues can be found as the roots of the characteristic polynomial $\chi(x)=\operatorname{det}(x \mathrm{I}-\mathrm{A})$.
3. The multiplicity of an eigenvalue λ is the largest t such that $(x-\lambda)^{t}$ divides the characteristic polynomial $\chi(x)$.
4. When counted with multiplicity, an $n \times n$ matrix has n eigenvalues.
5. If A is symmetric, in that $a_{i j}=a_{j i}$ for all i and j, or $\mathrm{A}^{\top}=\mathrm{A}$, then all the eigenvalues of A are real.
6. If λ is an eigenvalue of A, then λ^{k} is an eigenvalue of A^{k}.
7. A permutation matrix is a $0-1$ matrix with exactly one 1 in each row and in each column.
8. If we simulataneously relabel the rows and columns of A in the same way, the result is the matrix $\mathrm{A}^{\prime}=\mathrm{P}^{-1} \mathrm{AP}$ for some $n \times n$ permutation matrix P.
9. If $A^{\prime}=Q^{-1} A Q$ for some invertible matrix Q, then A^{\prime} and A have the same eigenvalues.
10. The trace of A is the sum of the diagonal elements $\operatorname{Tr} \mathrm{A}=\sum_{i=1}^{n} a_{i i}$.
11. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of A counted with multiplicity, then the trace is the sum of the eigenvalues $\operatorname{Tr} \mathrm{A}=\sum_{i=1}^{n} \lambda_{i}$.

Topics in Discrete Mathematics Part 2: Introduction to Graph Theory
 Linear Algebra Facts

The following facts from linear algebra will be used without proof. Throughout, $\mathbf{A}=\left(a_{i j}\right)$ is an $n \times n$ real matrix.

1. If for some $\lambda \in \mathbb{C}$ and some nonzero vector \mathbf{v} we have $\mathrm{A} \mathbf{v}=\lambda \mathbf{v}$, then we say λ is an eigenvalue of A , and \mathbf{v} is an associated eigenvector.
2. Eigenvalues can be found as the roots of the characteristic polynomial $\chi(x)=\operatorname{det}(x \mathrm{I}-\mathrm{A})$.
3. The multiplicity of an eigenvalue λ is the largest t such that $(x-\lambda)^{t}$ divides the characteristic polynomial $\chi(x)$.
4. When counted with multiplicity, an $n \times n$ matrix has n eigenvalues.
5. If A is symmetric, in that $a_{i j}=a_{j i}$ for all i and j, or $\mathrm{A}^{\top}=\mathrm{A}$, then all the eigenvalues of A are real.
6. If λ is an eigenvalue of A, then λ^{k} is an eigenvalue of A^{k}.
7. A permutation matrix is a $0-1$ matrix with exactly one 1 in each row and in each column.
8. If we simulataneously relabel the rows and columns of A in the same way, the result is the matrix $\mathrm{A}^{\prime}=\mathrm{P}^{-1} \mathrm{AP}$ for some $n \times n$ permutation matrix P.
9. If $A^{\prime}=Q^{-1} A Q$ for some invertible matrix Q, then A^{\prime} and A have the same eigenvalues.
10. The trace of A is the sum of the diagonal elements $\operatorname{Tr} \mathrm{A}=\sum_{i=1}^{n} a_{i i}$.
11. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of A counted with multiplicity, then the trace is the sum of the eigenvalues $\operatorname{Tr} \mathrm{A}=\sum_{i=1}^{n} \lambda_{i}$.
