Topics in Discrete Mathematics

Part 2: Introduction to Graph Theory

Linear Algebra Facts

The following facts from linear algebra will be used without proof. Throughout, $A = (a_{ij})$ is an $n \times n$ real matrix.

- 1. If for some $\lambda \in \mathbb{C}$ and some nonzero vector **v** we have $A\mathbf{v} = \lambda \mathbf{v}$, then we say λ is an *eigenvalue* of A, and v is an associated *eigen*vector.
- 2. Eigenvalues can be found as the roots of the *characteristic poly*nomial $\chi(x) = \det(xI - A)$.
- 3. The multiplicity of an eigenvalue λ is the largest t such that $(x-\lambda)^t$ divides the characteristic polynomial $\chi(x)$.
- 4. When counted with multiplicity, an $n \times n$ matrix has n eigenvalues.
- 5. If A is symmetric, in that $a_{ij} = a_{ji}$ for all i and j, or $A^{\top} = A$, then all the eigenvalues of A are real.
- 6. If λ is an eigenvalue of A, then λ^k is an eigenvalue of A^k .
- 7. A *permutation matrix* is a 0–1 matrix with exactly one 1 in each row and in each column.
- 8. If we simulataneously relabel the rows and columns of A in the same way, the result is the matrix $A' = P^{-1}AP$ for some $n \times n$ permutation matrix P.
- 9. If $A' = Q^{-1}AQ$ for some invertible matrix Q, then A' and A have the same eigenvalues.
- 10. The *trace* of A is the sum of the diagonal elements $\operatorname{Tr} A = \sum_{i=1}^{n} a_{ii}$.
- 11. If $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A counted with multiplicity, then the trace is the sum of the eigenvalues $\operatorname{Tr} \mathsf{A} = \sum_{i=1}^{n} \lambda_i$.

Matthew Aldridge m.aldridge@bristol.ac.uk

Topics in Discrete Mathematics Part 2: Introduction to Graph Theory

Linear Algebra Facts

- The following facts from linear algebra will be used without proof. Throughout, $A = (a_{ij})$ is an $n \times n$ real matrix.
- 1. If for some $\lambda \in \mathbb{C}$ and some nonzero vector **v** we have $A\mathbf{v} = \lambda \mathbf{v}$. then we say λ is an *eigenvalue* of A, and v is an associated *eigen*vector.
- 2. Eigenvalues can be found as the roots of the *characteristic poly*nomial $\chi(x) = \det(xI - A)$.
- 3. The multiplicity of an eigenvalue λ is the largest t such that $(x-\lambda)^t$ divides the characteristic polynomial $\chi(x)$.
- 4. When counted with multiplicity, an $n \times n$ matrix has n eigenvalues.
- 5. If A is symmetric, in that $a_{ij} = a_{ji}$ for all i and j, or $A^{\top} = A$, then all the eigenvalues of A are real.
- 6. If λ is an eigenvalue of A, then λ^k is an eigenvalue of A^k .
- 7. A *permutation matrix* is a 0–1 matrix with exactly one 1 in each row and in each column.
- 8. If we simulataneously relabel the rows and columns of A in the same way, the result is the matrix $A' = P^{-1}AP$ for some $n \times n$ permutation matrix P.
- 9. If $A' = Q^{-1}AQ$ for some invertible matrix Q, then A' and A have the same eigenvalues.
- 10. The *trace* of A is the sum of the diagonal elements $\operatorname{Tr} A = \sum_{i=1}^{n} a_{ii}$.
- 11. If $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A counted with multiplicity, then the trace is the sum of the eigenvalues $\operatorname{Tr} \mathsf{A} = \sum_{i=1}^{n} \lambda_i$.

Matthew Aldridge m.aldridge@bristol.ac.uk