Topics in Discrete Mathematics
Part 2: Introduction to Graph Theory

Lecture 2
Paths, Circuits, and Cycles

e Definitions: walk, trail, path,
closed walk, circuit, cycle

e Connectedness

e KEulerian circuits, and their existence in
a connected graph iff all degrees even

e Hamiltonian cycles and Dirac’s theorem

o Trees

2.1 Defintions

Think of this graph as denoting some towns linked together by roads.

Another example might be sending a packet of information around a computer net-

work.

A natural thing to do might be to walk from town to town along the edges of the

graph.

Definition 2.1. A walk of length k from vy € V' to v, € V is a sequence of vertices
VoUV2 - + - Vp_1Vk such that the adjacent pairs vovi, v1va, ..., vp_1v; are all edges.

A trail is a walk with all edges distinct.
A path is a walk with all vertices (and hence all edges) distinct.

In the example of the walk around towns, it seems natural for the walker to want
to end up back where she started.

Definition 2.2. A closed walk is a walk vgvivg - - - vp_1vg from a vertex vg back to
itself.

A circuit is a trail from a vertex back to itself. Equivalently, a circuit is a closed
walk with all edges distinct.

A cycle is a path from a vertex back to itself (so the first and last vertices are
not distinct). Equivalently, a cycle is a closed walk with all vertices (and hence all
edges) distinct (except the first and last vertices).

To summarize these definitions:

Don’t reuse Don’t reuse
Any reuse .
edges vertices (or edges)
Start and end walk trail path
anywhere
Start and end closed walk circuit cycle
at the same place

So in this picture

e 124523 is walk and a trail, but not a path;
e 124231 is a walk and a closed walk;

e 1231 is a walk, trail, closed walk, circuit and cycle.

2.2 Connectivity

Last time, we saw this graph



and noted that this seemed to be more like two graphs than one.

With our new definitions, we can formalise way they seem separate: it’s that there
isn’t a walk from a vertex on the left K3 to the right Cy. When this happens, we
say that the graph is not connected.

Definition 2.3. Consider a graph G = (V, E).
For two vertices u,v € V', we write u — v if there exists a walk from u to v.

If u — v for every pair of vertices u,v € V, we say that G is connected

It’s easy to check that — is an equivalence relation on V. This means that —
partitions V into what we call the connected components.

So the graph above has two connected components — the K3 and the Cj.

Often in this course, we shall restrict ourselves to connected graphs, knowing
that for a disconnected graph we can direct our attention to each of the connected
components separately.

2.3 FEulerian circuits

KONINGSBERGA

Above is a picture (and a cartoon) of the city of Konigsberg (now called Kalin-
ingrad) in Russia, as it stood in the 18th century, with its famous seven bridges over
the river Pregel. The story has it that the Konigsbergers wanted to be able to go
for an afternoon walk that would take them over each bridge exactly once and end
up back at the house they started from. However as they discovered — and as you
might notice from the picture above — it seemed difficult to manage this. So they
called in Leonhard Euler, the greatest mathematician of the time (or perhaps any
time) to help solve the problem.

Euler then invented graph theory, by noting that Konigsberg could be represented
by a graph where the landmasses are vertices and the bridges edges.

(In fact this graph has multiple edges, which we said weren’t allowed in this course.
You can either check that the results in this section also apply to multigraphs, or
cunningly subdivide two of the edges by adding extra vertices, which clearly doesn’t
change the problem.)

So a solution to the Konigsberg problem would be a circuit (which can use each
edge at most once and must end where it start) that uses every edge (necessarily
exactly once).

Definition 2.4. An Eulerian circuit on a graph is a circuit that uses every edge.

What Euler worked out is that there is a very simple necessary and sufficient
condition for an Eulerian circuit to exist.

Theorem 2.5. A graph G = (V,E) has an Eulerian circuit if and only if G is
connected and every vertex v € V' has even degree d(v).

Note that the Konigsberg graph has four vertices of odd degree, so no Eulerian
circuit exists.

Proof. (Only if) Clearly G must be connected. Note that everytime the Eulerian
circuit visits a vertex v, it uses one edge to enter and other to exit. Hence, the degree
d(v) must be twice the number of visits to v, an even number.

Before beginning the ‘if” part of the proof, we outline the idea of the proof. Given
a connected graph with all even degrees, we want to construct an Eulerian circuit.
We will do this as follows:



Pick a starting vertex, and pick any circuit back to that vertex. If this is Eulerian,
we are done. Otherwise, we can find another circuit that intersects a first one, and
splice the second circuit into the first to make a new, larger circuit. Again, if this
is Eulerian, we're done; else we splice in another circuit. Continuing like this, we
eventually get an FEulerian circuit.

We just need to check that this process will always work.

Proof continued. (If) We will construct an Eulerian circuit.

Pick an arbitrary starting vertex vy, and choose a circuit C; = D; starting from
and returning to v1. Note that we can indeed do this: since all vertices are even, we
can exit any vertex we enter, and since the graph is finite, we must eventually make
our way back to v.

If Cy is Eulerian, we are done. Else, choose a vertex v, on C; that has spare edges
left — if we were unable to do this, G would be disconnected. By the same logic, we
can pick a circuit Dy from the remaining edges starting from and returning to vs.
We then create a new circuit Cy as follows: we begin at v1, walk to vo on the first
part of Cy, walk around Dy back to vo, then walk back from vy to v1 on the second
part of Cf.

Again, if Cy Eulerian, we are done. Else we pick a vertex vs with edges remaining,
choose another circuit D3 containing vs, and splice D3 into Cs to make a new circuit
Cs.

Since our graph is finite, this process must eventually use up all the edges, giving
us an Eulerian circuit. O

Given a connected graph with all even degrees, we can use the algorithm in the
proof above to construct an Eulerian circuit.

Example 2.6. Consider the following graph:

Note that it is connected and has all even degrees, so we know an Eulerian circuit
exists. Now we want to build one.
We pick 1 as our starting vertex and

1231

as the first circuit.

This is not Eulerian. Vertex 2 still has edges left over, so we pick 2452 as our
second circuit. Splicing this into the first, we get

12 452 31.

This is still not Eulerian, but 4 has spare edges, and is in the circuit 46534.
Splicing this in, we get
124 6534 5231.

This is Eulerian, so we have an Eulerian circuit 12465345231.



2.4 Hamiltonian cycles

The Bridges of Konigsberg problem is a bit artificial — more often, it seems natural to
want a walk to visit every vertex. For example, if the graph is map of towns, we may
want to visit each of the towns (not each of the roads); if we think of information
going around a network, we want it to get to every computer (not be transmitted
down every wire). In the example of towns, we’ll also probably want a cycle, so we
end up where we started.

Definition 2.7. A Hamiltonian cycle on a graph is a cycle that visits every vertex.

Note that, by definition, a cycle can visit each vertex at most once, so a Hamilto-
nian cycle will visit every vertex exactly once (except that the first and last vertex
are the same).

Hamiltonian cycles are named after William Rowan Haimlton, who invented the
‘icosian game’, which asked if there is a Hamiltonian cycle on the graph of the
dodecahedron.

(He got the game made out of wood and sold it — not very successfully.)

Unfortunately, unlike for Eulerian circuits, there is no easy way in general to tell
whether or not a graph has a Hamiltonian cycle. (It’s an NP-complete problem.)
However, we can say that if there are lots of edges incident at every vertex, then a
Hamiltonian cycle must exist. This result is called Dirac’s theorem, after GA Dirac
(stepson of the famous quantum theorist and Bristolian Paul Dirac).

Theorem 2.8 (Dirac’s theorem). Consider a graph G = (V, E) with n = |V| > 3
vertices. If d(v) > n/2 for allv € V, then G has a Hamiltonian cycle.

Proof. Suppose G has no Hamiltonian cycle. We will show that we cannot have all
degrees n/2 or bigger.

Without loss of generality, we can add edges to G until it is maximal non-
Hamiltonian; that is, until adding any extra edge would form a Hamiltonian cycle.

Therefore G must have a path vgv; ... v,—1 that goes through every vertex exactly
once (a Hamiltonian cycle minus an edge).

Suppose, seeking a contradiction, that d(vg) > n/2 and d(v,—1) > n/2. We claim
that there must be an 4, 2 < i < n — 3 such that both vgv;+1 and v;v,, are edges.

@W@

Let’s prove this claim. Since vg is already adjacent to v; and not adjacent to v, _1,
then it is joined to at least n/2 — 1 of the vertices va,vs,...,U,_o. If we wanted
the claim to be false, then v,_; would have to avoid the n/2 — 1 or more vertices
following these (including ve, but perhaps losing one by not counting i = n — 2).
But if d(v,—1) > n/2, it has to take n/2 — 1 of these n — 3 vertices too. But
2(n/2 — 1) > n — 3, so the claim is unavoidable.

But now we have a Hamiltonian cycle

VU1 *** Vj—1ViUn—-1Up—2 ** - Vj42V;4170-

This is a contradiction, and we are done. O

Note that the condition in Dirac’s theorem ia sufficient but not necessary for the
existence of a Hamiltonian cycle. For example, Hamilton’s icosian game has n = 20
vertices but all degrees d(v) = 3 < n/2, but it does indeed have a Hamiltonian cycle.




2.5 Trees

These graphs should be recognisable as what are called trees.

LR

What makes these graphs special is that there are no cycles in them — they are
acyclic.

Definition 2.9. An acyclic graph is called a forest.
A connected acyclic graph is called a tree.
A vertex of degree 1 in a tree or forest is called a leaf.

(These definition are as close as we’re going to get to jokes in this course.)
An equivalent way to define trees is by noting there is a unique path between any
two vertices.

Theorem 2.10. A graph G = (V, E) is a tree if and only if for every u,v € V there
s a unique path from u to v.

Proof. (If) Suppose G is not a tree. We need to find v and v without a unique path.
If G is not connected pick u and v in different connected components. If G has a
cycle C, pick u and v two be two vertices on C. Then there are two paths from u to
v: clockwise on C' and anticlockwise on C.

(Only if) Again we prove the contrapositive. First, suppose there is no path from
u to v. Then G is not connected, so not a tree. Second, suppose there are two paths
P; and P, from u to v. Let x be the first place P and P, separate and y be the
next place the join back up. Then we have a cycle in G — from z to y along P, then
back to x backwards on P, — so G is not a tree.

el

X
L 0

Looking at the trees above, you’ll notice that they all have one fewer edge than
they have vertices. This is always the case.

Theorem 2.11. If G = (V, E) is a tree, then |E| = |V| — 1.

In fact, this can also be made an ‘if and only if’ too: any connected graph with
|E| =|V]| —1is a tree. (You might like to try and prove this.)

Proof. We proceed by induction on |V|. The base case |V| =1 is trivial.

Consider a graph G = (V, E) with |V| = n, and assume the theorem holds for
all smaller values of |V|. Pick and edge e and remove it. This disconnects G into
a forest of two trees, with £ and n — k vertices, for some k < n. By the inductive
hypothesis, these have k — 1 and n — k — 1 edges respectively. Adding e back in
again, our graph G has

m=k-1)+n—-k—-1)+1=n-1

edges, as desired. O

Next time: A day-before-Valentine’s Day special: How to make sure everyone
can get married to someone they like.
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