
Topics in Discrete Mathematics
Part 2: Introduction to Graph Theory

Lecture 2

Paths, Circuits, and Cycles

• Definitions: walk, trail, path,
closed walk, circuit, cycle

• Connectedness

• Eulerian circuits, and their existence in
a connected graph iff all degrees even

• Hamiltonian cycles and Dirac’s theorem

• Trees

2.1 Defintions

Think of this graph as denoting some towns linked together by roads.

Another example might be sending a packet of information around a computer net-
work.

A natural thing to do might be to walk from town to town along the edges of the
graph.

Definition 2.1. A walk of length k from v0 ∈ V to vk ∈ V is a sequence of vertices
v0v1v2 · · · vk−1vk such that the adjacent pairs v0v1, v1v2, . . . , vk−1vk are all edges.

A trail is a walk with all edges distinct.
A path is a walk with all vertices (and hence all edges) distinct.

In the example of the walk around towns, it seems natural for the walker to want
to end up back where she started.

Definition 2.2. A closed walk is a walk v0v1v2 · · · vk−1v0 from a vertex v0 back to
itself.

A circuit is a trail from a vertex back to itself. Equivalently, a circuit is a closed
walk with all edges distinct.

A cycle is a path from a vertex back to itself (so the first and last vertices are
not distinct). Equivalently, a cycle is a closed walk with all vertices (and hence all
edges) distinct (except the first and last vertices).

To summarize these definitions:

Any reuse
Don’t reuse

edges
Don’t reuse

vertices (or edges)

Start and end
anywhere

walk trail path

Start and end
at the same place

closed walk circuit cycle

So in this picture
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• 124523 is walk and a trail, but not a path;

• 124231 is a walk and a closed walk;

• 1231 is a walk, trail, closed walk, circuit and cycle.

2.2 Connectivity

Last time, we saw this graph
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and noted that this seemed to be more like two graphs than one.

With our new definitions, we can formalise way they seem separate: it’s that there
isn’t a walk from a vertex on the left K3 to the right C4. When this happens, we
say that the graph is not connected.

Definition 2.3. Consider a graph G = (V,E).

For two vertices u, v ∈ V , we write u→ v if there exists a walk from u to v.

If u→ v for every pair of vertices u, v ∈ V , we say that G is connected

It’s easy to check that → is an equivalence relation on V . This means that →
partitions V into what we call the connected components.

So the graph above has two connected components – the K3 and the C4.

Often in this course, we shall restrict ourselves to connected graphs, knowing
that for a disconnected graph we can direct our attention to each of the connected
components separately.

2.3 Eulerian circuits

Above is a picture (and a cartoon) of the city of Königsberg (now called Kalin-
ingrad) in Russia, as it stood in the 18th century, with its famous seven bridges over
the river Pregel. The story has it that the Königsbergers wanted to be able to go
for an afternoon walk that would take them over each bridge exactly once and end
up back at the house they started from. However as they discovered – and as you
might notice from the picture above – it seemed difficult to manage this. So they
called in Leonhard Euler, the greatest mathematician of the time (or perhaps any
time) to help solve the problem.

Euler then invented graph theory, by noting that Königsberg could be represented
by a graph where the landmasses are vertices and the bridges edges.

(In fact this graph has multiple edges, which we said weren’t allowed in this course.
You can either check that the results in this section also apply to multigraphs, or
cunningly subdivide two of the edges by adding extra vertices, which clearly doesn’t
change the problem.)

So a solution to the Königsberg problem would be a circuit (which can use each
edge at most once and must end where it start) that uses every edge (necessarily
exactly once).

Definition 2.4. An Eulerian circuit on a graph is a circuit that uses every edge.

What Euler worked out is that there is a very simple necessary and sufficient
condition for an Eulerian circuit to exist.

Theorem 2.5. A graph G = (V,E) has an Eulerian circuit if and only if G is
connected and every vertex v ∈ V has even degree d(v).

Note that the Königsberg graph has four vertices of odd degree, so no Eulerian
circuit exists.

Proof. (Only if ) Clearly G must be connected. Note that everytime the Eulerian
circuit visits a vertex v, it uses one edge to enter and other to exit. Hence, the degree
d(v) must be twice the number of visits to v, an even number.

Before beginning the ‘if’ part of the proof, we outline the idea of the proof. Given
a connected graph with all even degrees, we want to construct an Eulerian circuit.
We will do this as follows:
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Pick a starting vertex, and pick any circuit back to that vertex. If this is Eulerian,
we are done. Otherwise, we can find another circuit that intersects a first one, and
splice the second circuit into the first to make a new, larger circuit. Again, if this
is Eulerian, we’re done; else we splice in another circuit. Continuing like this, we
eventually get an Eulerian circuit.

We just need to check that this process will always work.

Proof continued. (If ) We will construct an Eulerian circuit.
Pick an arbitrary starting vertex v1, and choose a circuit C1 = D1 starting from

and returning to v1. Note that we can indeed do this: since all vertices are even, we
can exit any vertex we enter, and since the graph is finite, we must eventually make
our way back to v1.

If C1 is Eulerian, we are done. Else, choose a vertex v2 on C1 that has spare edges
left – if we were unable to do this, G would be disconnected. By the same logic, we
can pick a circuit D2 from the remaining edges starting from and returning to v2.
We then create a new circuit C2 as follows: we begin at v1, walk to v2 on the first
part of C1, walk around D2 back to v2, then walk back from v2 to v1 on the second
part of C1.

Again, if C2 Eulerian, we are done. Else we pick a vertex v3 with edges remaining,
choose another circuit D3 containing v3, and splice D3 into C2 to make a new circuit
C3.

Since our graph is finite, this process must eventually use up all the edges, giving
us an Eulerian circuit.

Given a connected graph with all even degrees, we can use the algorithm in the
proof above to construct an Eulerian circuit.

Example 2.6. Consider the following graph:
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Note that it is connected and has all even degrees, so we know an Eulerian circuit
exists. Now we want to build one.

We pick 1 as our starting vertex and

1231

as the first circuit.
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This is not Eulerian. Vertex 2 still has edges left over, so we pick 2452 as our
second circuit. Splicing this into the first, we get

12 452 31.
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This is still not Eulerian, but 4 has spare edges, and is in the circuit 46534.
Splicing this in, we get

124 6534 5231.
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This is Eulerian, so we have an Eulerian circuit 12465345231.
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2.4 Hamiltonian cycles

The Bridges of Königsberg problem is a bit artificial – more often, it seems natural to
want a walk to visit every vertex. For example, if the graph is map of towns, we may
want to visit each of the towns (not each of the roads); if we think of information
going around a network, we want it to get to every computer (not be transmitted
down every wire). In the example of towns, we’ll also probably want a cycle, so we
end up where we started.

Definition 2.7. A Hamiltonian cycle on a graph is a cycle that visits every vertex.

Note that, by definition, a cycle can visit each vertex at most once, so a Hamilto-
nian cycle will visit every vertex exactly once (except that the first and last vertex
are the same).

Hamiltonian cycles are named after William Rowan Haimlton, who invented the
‘icosian game’, which asked if there is a Hamiltonian cycle on the graph of the
dodecahedron.

(He got the game made out of wood and sold it – not very successfully.)
Unfortunately, unlike for Eulerian circuits, there is no easy way in general to tell

whether or not a graph has a Hamiltonian cycle. (It’s an NP-complete problem.)
However, we can say that if there are lots of edges incident at every vertex, then a
Hamiltonian cycle must exist. This result is called Dirac’s theorem, after GA Dirac
(stepson of the famous quantum theorist and Bristolian Paul Dirac).

Theorem 2.8 (Dirac’s theorem). Consider a graph G = (V,E) with n = |V | ≥ 3
vertices. If d(v) ≥ n/2 for all v ∈ V , then G has a Hamiltonian cycle.

Proof. Suppose G has no Hamiltonian cycle. We will show that we cannot have all
degrees n/2 or bigger.

Without loss of generality, we can add edges to G until it is maximal non-
Hamiltonian; that is, until adding any extra edge would form a Hamiltonian cycle.

Therefore G must have a path v0v1 . . . vn−1 that goes through every vertex exactly
once (a Hamiltonian cycle minus an edge).

v0 v01 v02 v0 v0v0i v0i+1 v0 v0v0v v v v n-2v n-1v

Suppose, seeking a contradiction, that d(v0) ≥ n/2 and d(vn−1) ≥ n/2. We claim
that there must be an i, 2 ≤ i ≤ n− 3 such that both v0vi+1 and vivn are edges.

v0 v01 v02 v0 v0v0i v0i+1 v0 v0v0v v v v n-2v n-1v

Let’s prove this claim. Since v0 is already adjacent to v1 and not adjacent to vn−1,
then it is joined to at least n/2 − 1 of the vertices v2, v3, . . . , vn−2. If we wanted
the claim to be false, then vn−1 would have to avoid the n/2 − 1 or more vertices
following these (including v2, but perhaps losing one by not counting i = n − 2).
But if d(vn−1) ≥ n/2, it has to take n/2 − 1 of these n − 3 vertices too. But
2(n/2− 1) > n− 3, so the claim is unavoidable.

But now we have a Hamiltonian cycle

v0v1 · · · vi−1vivn−1vn−2 · · · vi+2vi+1v0.

v0 v01 v02 v0 v0v0i v0i+1 v0 v0v0n-2v v v v v n-1v

This is a contradiction, and we are done.

Note that the condition in Dirac’s theorem ia sufficient but not necessary for the
existence of a Hamiltonian cycle. For example, Hamilton’s icosian game has n = 20
vertices but all degrees d(v) = 3 < n/2, but it does indeed have a Hamiltonian cycle.
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2.5 Trees

These graphs should be recognisable as what are called trees.

What makes these graphs special is that there are no cycles in them – they are
acyclic.

Definition 2.9. An acyclic graph is called a forest.
A connected acyclic graph is called a tree.
A vertex of degree 1 in a tree or forest is called a leaf.

(These definition are as close as we’re going to get to jokes in this course.)
An equivalent way to define trees is by noting there is a unique path between any

two vertices.

Theorem 2.10. A graph G = (V,E) is a tree if and only if for every u, v ∈ V there
is a unique path from u to v.

Proof. (If ) Suppose G is not a tree. We need to find u and v without a unique path.
If G is not connected pick u and v in different connected components. If G has a
cycle C, pick u and v two be two vertices on C. Then there are two paths from u to
v: clockwise on C and anticlockwise on C.

u v

(Only if ) Again we prove the contrapositive. First, suppose there is no path from
u to v. Then G is not connected, so not a tree. Second, suppose there are two paths
P1 and P2 from u to v. Let x be the first place P1 and P2 separate and y be the
next place the join back up. Then we have a cycle in G – from x to y along P1, then
back to x backwards on P2 – so G is not a tree.

u v
x y

P1

P2

Looking at the trees above, you’ll notice that they all have one fewer edge than
they have vertices. This is always the case.

Theorem 2.11. If G = (V,E) is a tree, then |E| = |V | − 1.

In fact, this can also be made an ‘if and only if’ too: any connected graph with
|E| = |V | − 1 is a tree. (You might like to try and prove this.)

Proof. We proceed by induction on |V |. The base case |V | = 1 is trivial.
Consider a graph G = (V,E) with |V | = n, and assume the theorem holds for

all smaller values of |V |. Pick and edge e and remove it. This disconnects G into
a forest of two trees, with k and n − k vertices, for some k < n. By the inductive
hypothesis, these have k − 1 and n − k − 1 edges respectively. Adding e back in
again, our graph G has

m = (k − 1) + (n− k − 1) + 1 = n− 1

edges, as desired.

Next time: A day-before-Valentine’s Day special: How to make sure everyone
can get married to someone they like.

Matthew Aldridge
m.aldridge@bristol.ac.uk
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