
Topics in Discrete Mathematics
Part 2: Introduction to Graph Theory

Lecture 4

Planar Graphs

• Definitions: planar graph, embeddings, faces

• Euler’s formula

• The 3n− 6 rule and the nonplanarity of K5

• Generalisation of the 3n− 6 rule
and the nonplanarity of K3,3

• Kuratowski’s theorem (without proof)

4.1 The utility puzzle

Puzzle. Can you connect the three houses to the three utilities – gas, water, and
electricity – without any of the pipes or wires crossing?

4.2 Definitions

This lecture, we’re thinking about graphs that can be drawn on a piece of paper
without edges crossing.

Definition 4.1. A graph G is planar if it can be drawn in the plane without edge
crossings.

A particular drawing of a planar graph G is called a planar embedding of G.

So to show a graph is planar, it suffices to give a drawing (embedding) of it.
So we see, for example, that the paths Pn and cycle Cn are always planar.

We also see that K1, K2, K3 and (being a little bit clever with the drawing) K4

are all planar.

The areas in between edges are called faces.

Definition 4.2. An embedding of a planar graph partions the plane into a finite
number of area, which we call faces.

The degree d(F ) of a face F is the number of edges encountered in a walk around
the perimeter of the graph.

So the following graph has three faces: A, B and the infinite face on the outside,
C.

A
B

C

(Never forget the infinite face!) These faces have degrees d(A) = 4, d(B) = 5 and
d(C) = 5. Note that we get d(B) = 5 as the edge protruding into the triangle is
counted once on the way in and then once more on the way out.

Note that we could choose to draw the above graph in a different way as:

X Y

Z
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This again has three faces, X,Y, Z, but these have different degrees to before: d(X) =
4, d(Y ) = 3 and d(Z) = 7 (again remembering we go up and down the hanging edge).

Note that whenever there is a cycle in a graph, those edges split the ‘outside’ of
the cycle from the ‘inside’, so all the edges have their two sides adjacent to different
faces. Conversely, edges not in any cycles, ‘hang into’ a face, and have that same
face on both sides.

4.3 Euler’s formula

Although the two drawings of the graph above had some different features, they both
had the same number of faces, 3. In fact this is always the case, as Euler’s formula
(also known as Euler’s polyhedron formula) shows.

Theorem 4.3 (Euler’s formula). Consider a connected planar graph G = (V,E)
with n = |V | vertices and m = |E| edges, and an embedding of G with f faces. Then
n−m + f = 2.

So if a graph is planar, however we draw it, it will have f = 2− n + m faces.
We can check that Euler’s formula holds. So for K4, for example, we have n = 4,

m = 6, f = 4, and indeed n−m + f = 4− 6 + 4 = 2. (This kind of quick example
is a good sanity check that you’ve remembered the formula correctly.)

The use of Euler’s formula is that it allows you to eliminate one of the variables
n,m, f in any equation – this will come in useful later.

Proof. We work by induction on the number of faces f .
For the base case, if f = 1, then our graph has no cycles, and since it is also

connected, it must be a tree. But by Theorem 2.11, we known that m = n− 1 for a
tree. Hence

n−m + f = n− (n− 1) + 1 = 2,

as desired.
Now consider a graph with f ≥ 2 faces, and assume the theorem holds when there

are f − 1 faces. Since there is more than one face, our graph must contain a cycle –
pick an edge e in that cycle. Removing the edge merges the two faces on either side
of e, giving a graph that still has n vertices, but m − 1 edges and f − 1 faces. By
the inductive hypothesis, we have n− (m− 1) + (f − 1) = 2, and rearranging gives
n−m + f = 2, as desired.

A Be C

For disconnected graphs, we have a similar result.

Theorem 4.4. Consider a planar graph G = (V,E) with c connected components
n = |V | vertices and m = |E| edges, and an embedding of G with f faces. Then
n−m + f = 1 + c. Generally, we have n−m + f ≥ 2.

Sketch proof. A simple induction on c. Adding an extra edge between two compo-
nents reduces c by 1 and increases m by 1.

Although our example above had two drawings with faces of different degrees, in
fact the sum of the degrees was the same. This is not a coincidence either.

Theorem 4.5 (Handshake lemma for faces). Consider an embedding of a planar
graph G = (V,E) with m = |E| edges. Then∑

faces F

d(F ) = 2m.

The proof is very similar to the usual handshake lemma.

Proof. Go through the faces of the embedding of G, summing the edges surrounding
each face – this is

∑
F d(F ). But each edge has been counted twice, once for either

side (in different faces if the edge was in a cycle, twice in the same face if it wasn’t).
This is 2m.

4.4 Proving nonplanarity

Proving a graph is planar is easy – just draw it without edge crossings. However,
showing a graph is nonplanar can be hard – just because you haven’t managed to
draw it, it doesn’t mean that a clever embedding can’t exist.

For example, you may suspect that K5 is likely to be nonplanar. Similarly, if
you’ve failed to solve the utility puzzle above, you’ve perhaps realised that showing
no solutation exists would be equivalent to proving that the complete bipartite graph
K3,3 is nonplanar.

The main way we show graphs are nonplanar is by showing they have too many
edges. It turns out that planar graphs have very few edges (they are ‘sparse’), and
so any graph with lots of edges will fail to be planar.

More specifically, we have the ‘3n− 6’ rule.

Theorem 4.6. Let G = (V,E) be a planar graph with n = |V | vertices and m =
|E| ≥ 2 edges. Then m ≤ 3n− 6.

So if a graph has more than 3n− 6 edges it must be nonplanar. Note that 3n− 6
edges is very few compared to, say, the complete graph Kn, which has n(n− 1)/2 ≈
1
2n

2 edges.
The theorem above is sufficent to prove that K5 is indeed nonplanar, since n = 5,

so 3n − 6 = 9, where as K5 has m = 10 > 9 edges. Hence K5 has too many edges,
breaks the 3n− 6 rule, so must be nonplanar.
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Proof. Note that every face must be surrounded by a cycle (since we’ve ruled out
K2 through demanding m ≥ 2), and the shortest cycle is the triangle, of length 3.
Hence the degree d(F ) of every face must be at least 3. Hence, by the handshake
lemma for faces, we have

2m =
∑

faces F

d(F ) ≥
∑

faces F

3 = 3f.

Since the theorem has no f in it, we can substitute in Euler’s formula to get rid
of the f , getting

2m ≥ 3(2− n + m) = 6− 3n + 3m.

Rearranging gives m ≤ 3n− 6, as desired.

Note that the 3n − 6 rule is not sufficient to prove that K3,3 is nonplanar. This
has n = 6, so 3n− 6 = 12, but has m = 9 edges, which is not so many that the rule
can prove nonplanarity.

However, we can improve the theorem for graphs that avoid certain short cycles.

Theorem 4.7. Let G = (V,E) be a planar graph that has no cycles shorter than
length k, with n = |V | vertices and m = |E| ≥ k/2 edges. Then

m ≤ k

k − 2
(n− 2).

Note that the special case k = 3 gives the 3n− 6 rule.
This result is strong enough to prove that K3,3 is nonplanar. Note that K3,3, like

all bipartite graphs, is triangle-free, in that it has no 3-cycles. Hence, we can take
k = 4 in the above theorem, to make the condition for nonplanarity that

m >
4

4− 2
(n− 2) = 2n− 4.

But for K3,3, we have n = 6, so 2n− 4 = 8, but m = 9. This is too many, and K3,3

must be nonplanar.

Proof. The proof is the same as for the 3n − 6 rule. Note now that every face has
degree at least k, so the handshake lemma gives 2m ≥ kf . Substituting in Euler’s
formula gives the result.

It’s easy to see that if a graph G is nonplanar, then so is any graph that has G as
a subgraph. So, for example, this graph

is clearly nonplanar, as the K5 subgraph is nonplanar.
A similar idea is that of subdividing.

Definition 4.8. A graph H is a subdivision of a graph G if one can produce H from
G by replacing edges of G by (disjoint) paths.

So, for example, the graph below is a subdivision of K4.

It’s easy to see that the subdivision of a nonplanar graph must be nonplanar
also. Otherwise, the embedding of the path of the subdivision could be used as the
embedding of the edge in the original graph.

Hence, we can show that the following graph is nonplanar by identifying a sub-
graph that is a subdivision of K3,3.

We’ve concentrated on K5 and K3,3 as nonplanar graphs in this lecture. But in
fact, they are, in some sense the only two nonplanar graphs there are. Kuratowski’s
theorem tells us that any nonplanar graph has either K5 or K3,3 hidden inside it.

Theorem 4.9 (Kuratowski’s theorem). A graph is nonplanar if and only if it con-
tains a subgraph that is (isomorphic to) a subdivision of either K5 or K3,3.

The ‘if’ is clear by the discussion above; the ‘only if’ is difficult and outside the
bounds of this course.

Next time: Using linear algebra in graph theory (so you might want to remind
yourselves about eigenvalues and things like that).
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