
Topics in Discrete Mathematics
Part 2: Introduction to Graph Theory

Lecture 5

Graph Theory and
Linear Algebra

• The adjacency matrix

• The spectrum, and that
isomorphic graphs are cospectral

• Properties that can be inferred from the spectrum

• Properties that can’t be inferred from the spectrum

5.1 The adjacency matrix

So far in this course, we’ve seen two ways to define a graph. The more formal way is
to write down the sets V and E, which give the graph unambiguously. The less formal
way is just to draw a picture, which defines a graph up to isomorphisms.

However, suppose you wanted to input the graph to a computer – how would you
define it then? One natural way, for a graph with n vertices, would be to store an
n × n array, or table, and place a 1 in position (i, j) to denote an edge ij, and leave
the array as 0 otherwise.

In this lecture, we consider this table as a matrix, an algebraic object, which we call
the adjacency matrix.

Definition 5.1. For a graph G = (V,E), the adjacency matrix A = (aij : i, j ∈ V ) of
G is defined by

aij =

{
1 if ij ∈ E,

0 if ij /∈ E.

For this lecture, we will follows conventions for algebra and label vertices using letters
like i and j, rather than the u and v we’ve used elsewhere.

Note that since ij = ji is the same edge, we have that aij = aji, so the adjacency
matrix A = A> is symmetric.

Consider, for example K2 ∪K1.

1 2 3

Since the only edge is 12 = 21, the adjacency matrix is

A =

0 1 0
1 0 0
0 0 0

 .

Alternatively, consider the complete graph Kn. Since ij is now an edge for every
distinct i 6= j, we see that the adjacency matrix is

A =


0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
...

. . .
...

1 1 1 · · · 0

 ,

with 0s down the diagonal and 1s everywhere else.
One use of the adjacency matrix is that it gives us a quick way to calculate the

number of walks between given vertices.

Theorem 5.2. Consider a graph G, and write Wij(k) for the number of walks between
vertices i and j of length k. Then Wij(k) = (Ak)ij; that is, the (i, j)th entry of the
matrix power Ak.

Proof. We work by induction on k. The base case k = 1 is easy, since there is one path
if ij is an edge, and no paths if it isn’t.

Now assume the theorem holds for paths of length k. A path from i to j of length
k + 1 consists of a walk of length k, followed by an edge from the final vertex of the
walk to j. Hence, we have

Wij(k + 1) =
∑

l∈V :lj∈E

Wil(k) =
∑
l∈V

Wil(k)alj ,

since the alj ensures that we only count vertices l adjacent to j. Substituting in the
indctive hypothesis, we get

Wij(k + 1) =
∑
l∈V

(Ak)ilalj = (AkA)ij = (Ak+1)ij ,

and we’re done.
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5.2 The spectrum

In this lecture, we will be interested in investigating ‘spectral graph theory’ which
involves trying to infer properties of a graph by looking at the eigenvalues of the
adjacency matrix, which are called the spectrum.

Definition 5.3. The spectrum of a graph G is the set of eigenvalues (with multiplicity)
of the adjacency matrix of G.

For a graph G = (V,E) with n = |V | vertices, the n × n adjacency matrix A has
n eigenvalues, when counted with multiplicity. Further, since A is symmetric, all n
eigenvalues will be real.

For small graphs, the easiest way to find the spectrum is to find the roots of the
characteristic polynomial χ(x) = det(xI− A).

Example 5.4. Earlier, we saw that the adjacency matrix of K2 ∪K1 was

A =

0 1 0
1 0 0
0 0 0

 .

Finding roots of the characteristic polynomial, we get

0 = χ(λ) =

 λ −1 0
−1 λ 0
0 0 λ

 = λ(λ2) + 1(−λ) = λ3 − λ = λ(λ− 1)(λ+ 1).

Hence, we see that the spectrum is λ = 1, 0,−1.

For large but structured graphs, it can be easier to find the spectrum by guessing
the eigenvectors.

Example 5.5. Consider Kn, which we saw had adjacency matrix

A =


0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
...

. . .
...

1 1 1 · · · 0

 .

First, applying A to the all-1 vector 1 = (1, 1, 1, . . . , 1), we see that A1 = (n− 1)1.
Hence λ = n− 1 is an eigenvector.

Second, consider taking a vector x orthogonal to 1, so that

x · 1 =

n∑
i=1

xi = 0.

We then see that

A


x1
x2
x3
...
xn

 =


x2 + x3 + · · ·+ xn

x1 + x3 + · · ·+ xn
x1 + x2 + · · ·+ xn

...
x1 + x2 + x3 + · · ·

 =



∑
i xi − x1∑
i xi − x2∑
i xi − x3

...∑
i xi − xn

 =


−x1
−x2
−x3

...
−xn

 ,

so λ = −1 is an eigenvalue also. The subspace of vectors x such that
∑

i xi = 0 has
dimension n− 1, so the eigenvalue λ = −1 has multiplicity n− 1 also.

We now have n eigenvalues (counted with multiplicity) so there are no others. Hence,
we see that the spectrum of Kn is λ = n − 1 with multiplicity 1 and λ = −1 with
multiplicity n− 1.

Usefully, it turns out that isomorphic graphs have the same spectrum – reinforcing
the view we’ve taken throughout the course that isomorphic graphs can be considered
equal.

(If you’d worried earlier that our definition of the adjacency matrix could be argued
to depend on an ordering put on the vertices, then this should put your mind at rest.)

Definition 5.6. Graphs with the same spectrum – that is, with adjacency matrices
having the same eigenvalues with the same multiplicities – are called cospectral.

Theorem 5.7. Isomorphic graphs are cospectral.

Proof. Let G and G′ be isomorphic graphs, and let A and A′ be their respective ad-
jacency matrices. Since an isomorphism is just a relabelling of vertices, we see that
A′ = P−1AP for some permutation matrix P, so A′ and A are similar matrices. But
similar matrices have the same eigenvalues with the same multiplicities, so we are
done.

Unfortunately, the converse to this theorem is not true. Consider the two graph K1,4

and C4 ∪K1.

These graphs are clearly nonisomorphic, but you can check that they both have the
characteristic polynomial χ(x) = x3(x − 2)(x + 2), so have the common spectrum
λ = 2, 0, 0, 0,−2.
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5.3 Properties that can be inferred from the spectrum

We will now consider some properties of a graph that can be deduced from its spectrum.

1 Number of vertices

We saw earlier that the number of eigenvalues of the adjacency matrix was equal to
the number of vertices.

2 Number of closed walks of a given length

Theorem 5.8. Consider a graph G with spectrum {λ1, λ2, . . . , λn}, and write CW (k)
for the number of closed walks of length k in G. Then

CW (k) =

n∑
i=1

λki .

Proof. Since the closed walks are precisely the walks that start and end in the same
place, we have CW (k) =

∑
i∈V Wii(k). Using Theorem 5.2, we have

CW (k) =
∑
i∈V

(Ak)ii = TrAk,

the trace of Ak.
We know that the trace of a matrix is the sum of its eigenvalues. Further, we know

that the eigenvalues of a matrix power are the powers of the eigenvalues of the original
matrix. Hence the eigenvalues of Ak are λk1 , λ

k
2 , . . . , λ

k
n, and we have

CW (k) = TrAk =

n∑
i=1

λni .

3 Number of edges

Theorem 5.9 (Handshaking lemma for the spectrum). Consider a graph G = (V,E)
with spectrum {λ1, λ2, . . . , λn}. Then

n∑
i=1

λ2i = 2|E|.

Proof. Note that the only closed paths of length 2 in a graph go down and back up a
single edge. Each edge ij is in two length-2 paths: iji, beginning and ending at one end,
i; and jij, beginning and ending at the other end, j. Hence we have 2|E| = CW (2),
and the result follows by Theorem 5.8.

4 Number of triangles

Recall that a triangle is a subgraph isomorphic to C3.

Theorem 5.10 (Handshaking lemma for the spectrum). Consider a graph G with
spectrum {λ1, λ2, . . . , λn}, and write T for the number of triangles in G. Then

T =
1

6

n∑
i=1

λ3i .

Proof. Note that the a closed paths of length 3 cannot repeat an edge, so CW (3) counts
precisely the number of 3-cycles in a graph. Note that this counts each triangle six
times: starting and ending at each of 1, 2 and 3, going both clockwise and anticlockwise.
Hence we have T = 1

6CW (3), and the result follows by Theorem 5.8.

5.4 Properties that can’t be inferred from the spectrum

It’s also worth noting that their are a number of important properties of graphs that
cannot be deduced from the spectrum.

Most of these can be illustrated by the example of the two cospectral graphs we
examined earlier, K1,4 and C4 ∪K1.

1 Isomorphism class

Clearly the two graphs above are not isomorphic. (Although, as we noted earlier, it is
true that isomorphic graphs are cospectral.)

2 Number of k-cycles, k ≥ 4

We see that C4 ∪K1 has one 4-cycle (or rather eight 4-cycles – the same C4 counted
in multiple ways), while K1,4 has none. And in fact it can be shown that this extends
to longer cycles too.

The reason the earlier proof for triangles does not extend is that it is not possible,
only from the spectrum, to tell apart the true cycles from the other closed walks of the
same length, when k ≥ 4.

3 Degree sequence

Since K1,4 has degree sequence (4, 1, 1, 1, 1) and C4 ∪ K1 has degree sequence
(2, 2, 2, 2, 0). Hence, the spectrum does not identify the degree sequence.
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4 Connectivity

Since K1,4 is connected and C4 ∪ K1 has two connected components. Hence, the
spectrum does not identify whether or not a graph is connected (or the number of
connected components).

Next time: Problems class – think about if you want topics going over again, more
examples, or to work through the problem sheet.

Matthew Aldridge
m.aldridge@bristol.ac.uk
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