8  Importance sampling I

Summary:

  • Importance sampling estimates \(\Exg \phi(X)\) by sampling from a different distribution \(Y\).

  • The importance sampling estimator is \({\displaystyle \widehat{\theta}_n^{\mathrm{IS}} = \frac{1}{n} \sum_{i=1}^n \frac{f(Y_i)}{g(Y_i)}\,\phi(Y_i)}\).

  • The importance sampling estimator is unbiased with mean-square error \[ \operatorname{MSE}\big(\widehat{\theta}_n^{\mathrm{IS}}\big) = \frac{1}{n} \operatorname{Var}\left( \frac{f(Y)}{g(Y)}\,\phi(Y) \right) . \]

Solutions are now available for Problem Sheet 1.

Read more: Voss, An Introduction to Statistical Computing, Subsection 3.3.1.